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Abstract— In this paper, the distributed rendezvous control
problem of networked uncertain robotic systems with bearing
measurements is investigated. The network topology of the
multi-robot systems is described by an undirected graph. The
dynamics of robots is modeled by Euler-Lagrange equation
with unknown inertial parameters, which is more general than
simple kinematics considered in existing works on rendezvous
problem of multi-robot systems. To achieve rendezvous, a
distributed adaptive force/torque control law is developed for
each robot, which uses bearings with respect to its neighbors
instead of relative displacements or distances. It is shown
that the resulting closed-loop multi-robot systems are globally
asymptotically stable. Then, the rendezvous control problem
of multiple wheeled mobile robots is further solved by the
proposed approach. Finally, on-site experiment on networked
TurtleBot3 Burger mobile robots is conducted and the results
demonstrate effectiveness of the proposed approach.

Index Terms—Multi-robot systems, motion control, net-
worked robots

I. INTRODUCTION

Rendezvous problem is one of the basic tasks in control

of multi-robot system, which has attracted much research at-

tention in recent years; see, for example [1]–[8]. Specifically,

for the kinematic models of single- or double-integrators

with relative displacement measurements, rendezvous prob-

lem is the same as the consensus problem [9]. Since the

mathematical models of most real robots are described by

nonlinear and nonholonomic systems, many works focused

on the rendezvous problem of unicycle-type mobile robots;

see [1], [3], [4], [6], in which the orientations of robots are

taken into consideration. However, the dynamics of most

robotic systems are more complicated, and their kinematics

are dependent on the dynamics. Therefore, it is of much

significance to investigate rendezvous problem for robots

with more general dynamics.
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The mathematical model of robots such as manipulators,

wheeled mobile robots, drones, underwater vehicles, and

walking robots [10]–[12], are usually described by Euler-

Lagrange equation. Based on this model, many remarkable

works on motion control of multiple robotic systems have

been shown, including consensus [13], [14], trajectory track-

ing [15], distributed optimization [16], containment control

[17], formation tracking control [18], as well as rendezvous

problem [8]. In particular, adaptive control approaches were

proposed in [8], [13] based on relative displacement mea-

surements between neighboring robots, such that the leader-

following consensus and rendezvous problems were solved

respectively. However, it may not be easy for multi-robot

systems to directly and accurately measure the real-time

inter-robot distances in some scenarios, especially for robots

with merely visual sensors such as cameras.

Recently, many works have devoted to control of multi-

robot system with bearing measurements, including the ren-

dezvous problem [4]–[6], the target-enclosing problem [19],

and the formation control problem [6], [20]–[24], since it is

easier to acquire the bearing measurements than the relative-

displacement or relative-distance ones by robots’ onboard

visual sensors. Particularly, the rendezvous problems of kine-

matic multi-robot systems with bearing measurements were

solved in [4]–[6]. However, to the best of our knowledge, the

rendezvous control problem of dynamic multi-robot systems

with bearing measurements still remains open.

This paper aims to solve the distributed rendezvous con-

trol problem of networked uncertain robots with bearing

measurements. The uncertainty lies in the unknown inertial

parameters including mass and moment of inertia. The

topology of sensing network is described by a connected

undirected graph. First, an adaptive force/torque control law

is proposed for each robot based merely on the bearing

measurements with respect to its neighbors and its own

position and velocity. The global asymptotic stability of the

resulting closed-loop system is established. Then, we apply

the obtained result to rendezvous control of multiple wheeled

mobile robots. Finally, experiment on networked TurtleBot3

Burger mobile robots are shown to illustrate the effectiveness

of the proposed approach.

The main contributions are summarized as follows. First,

the proposed control law solves the rendezvous problem of

uncertain dynamic robotic systems which are more gen-

eral and fundamental than those in most existing works

where kinematic models were considered [1]–[7]. Second,

compared with [8], [13] which considered leader-following

consensus and rendezvous problem of uncertain dynamic
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robotic systems, our proposed control law only requires each

robot to measure bearings instead of relative displacements

with respective to its neighboring robots. Moreover, our work

considers the leadless rendezvous problem which cannot be

handled in those leader-following frameworks, for instance

the one in [8]. Last but not least, unlike just simulation

results were provided in most existing works on the multi-

robot system control, this paper includes experimental im-

plementation on TurtleBot3 Burger mobile robots and the

proposed bearing-based rendezvous control of real robots is

first realized. The results of on-site experiment convincingly

demonstrate the effectiveness.

The remainder of this paper is organized as follows. In

Section II, the problem formulation is given. In Section III,

the main results including control law design and stability

analysis are presented. In Section IV, a case study on

rendezvous of wheeled mobile robots is given. In Section

V, on-site experiment are presented. Finally, the conclusion

is drawn in Section VI.

II. PROBLEM FORMULATION

Consider N robots in R
d, d ≥ 2, of which dynamics are

modeled as the following uncertain robotic systems,

Mi(qi)q̈i + Ci(qi, q̇i)q̇i +Gi(qi) = τi, i = 1, . . . , N, (1)

where qi ∈ R
d, q̇i ∈ R

d are the generalized position and

velocity of robot i, Mi(qi) ∈ R
d×d is the inertia matrix and

unknown to robot i, Ci(qi, q̇i) ∈ R
d×d is the Coriolis and

centrifugal matrix, Gi(qi) ∈ R
d is the gravity vector, and τi

is the generalized force as well as the control input to be

designed based on the information of neighboring agents. It

is well known that system (1) has the following properties.

Property 1: Mi(qi) is uniformly positive definite.

Property 2: Ṁi(qi) and Ci(qi, q̇i) satisfy xT(Ṁi(qi) −
2Ci(qi, q̇i))x = 0 for all x ∈ R

d

Property 3: For all x, y ∈ R
d, it holds that Mi(qi)x +

Ci(qi, q̇i)y+Gi(qi) = Yi(qi, q̇i, x, y)θi, where Yi(qi, q̇i, x, y)
is a known regression matrix and θi is a constant vector

consisting of systems’ physical parameters.

The network topology of the multi-robot systems is de-

scribed as an undirected graph G = (V , E), where node set

V = {1, . . . , N} denotes N robots and edge set E = {(j, i) :
j 6= i, i, j ∈ V} represents the sensing channel between

robots i and j. As a fundamental assumption on control of

multi-robot systems, the following assumption is required.

Assumption 1: Graph G is fixed and connected.

Moreover, a set including the neighbors of robot i is

denoted as Ni = {j ∈ V : (i, j) ∈ E}. For each (i, j) ∈ E ,

define the bearing between robots i and j as

gij =

{

qj−qi
‖qj−qi‖

, qj 6= qi,

0, qj = qi.
(2)

Now, the distributed rendezvous control problem with

bearing measurements is formulated as follows.

Problem 1: Consider N robots with the uncertain dynam-

ics (1) and a network topology G. For each robot i ∈ V ,

with any initial position qi(t0) ∈ R
d and initial velocity

q̇i(t0) ∈ R
d, design a dynamic control law in the form of

ρ̇i = ̺(qi, q̇i, gij , ġij),

τi = σ(ρi, qi, q̇i, gij , ġij), i ∈ V , j ∈ Ni, (3)

such that the relative displacements qi(t)− qj(t), ∀i, j ∈ V ,

converge to zero as t → ∞, where ̺(·) and σ(·) are two

sufficiently smooth functions to be designed.

Remark 1: It is obvious in Problem 1 that neither the posi-

tion of neighbors’ positions qj nor the relative displacements

qj−qi with respect to neighbors is required, while the relative

displacement qj−qi is widely utilized in control law design,

for example, those in [1], [8], [13]. Moreover, for each robot

i, the physical constant vector θi is also unknown. In other

words, robots are not required to know their own physical

parameters including mess, moment of inertia or sizes.

Remark 2: Note that qi and q̇i are also required in most

distributed control of robotic systems, for example [8], [15],

[25]. In this paper, qi and q̇i are used to compute the real-

time value of regression matrix Yi subject to the unknown

parameter θi. In fact, the knowledge of qi and q̇i may not

be necessary in some cases, for instance, the case presented

in the simulation example of [15] and the case with mobile

wheeled robots given in Section IV.

Remark 3: System (1) can be used to describe the dynam-

ics of many robotic systems including manipulator, wheeled

mobile robots, drones, and underwater vehicles [10]. Natu-

rally, the solution to Problem 1 can be applied to achieve

rendezvous of heterogenous robots, which means that all

robots finally share the same position/orientation. Note that

the setup of Problem 1 does not involve collision avoidance

or connectivity preservation which is our future interest. If

robots i and j share the same position, we assign gij = 0
in (2). In fact, since robots has their own sizes, the bearing

vectors can be well defined in practice. Finally, Assumption

1 is widely made in existing works on multi-robots systems

including the rendezvous problem [3], [4], [8].

III. RENDEZVOUS CONTROL WITH BEARING

MEASUREMENTS

In this section, a bearing-based adaptive force/torque con-

trol law is proposed to solve the rendezvous problem for

networked uncertain robotic systems, i.e., Problem 1.

A. Bearing-Based Adaptive Force/Torque Control Law

Since the inertial matrix Mi(qi) is unknown to each robot

i ∈ V , we need to design an adaptive law such that the

unknown physical parameters involved in Mi(qi) can be

estimated. To estimate θi, we define θ̂i ∈ R
d for each robot

i. The force/torque control law is proposed as

τi = −kcsi + q̇ri + Yi(qi, q̇i, q̇ri, q̈ri)θ̂i,

˙̂
θi = −γiY

T

i (qi, q̇i, q̇ri, q̈ri)si, (4)

with the auxiliary variables

q̇ri =
∑

j∈Ni

aijgij , si = q̇i − q̇ri, (5)
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where kc and γi are positive constants, and aij > 0 if i ∈
V , j ∈ Ni; otherwise aij = 0. The initial state of θ̂i can be

arbitrarily selected in R
d.

Since control law (4) depends only on the local measure-

ment and require no communication between robots, imple-

mentation on the networked robotic systems can be fully

distributed. To implement the control law in a distributed

manner, robots are required to be equipped with an optical

camera, as mentioned in [23], [24]. Accordingly, like in [23],

[24], gij is directly measured and ġij can be obtained based

on the pin-hole camera. The real-time velocity q̇i can be

measured by a variety of velocity transducers such as DC

or AC tachometers. The force/torque control law can be

implemented on each robot by its equipped servomotors.

Now we present the main result of this paper as follows.

Theorem 1: Under Assumption 1, control law (4) solves

Problem 1, and makes estimation errors θ̂i − θi, ∀i ∈ V
bounded and convergent.

B. Stability Analysis

The proof of Theorem 1 is stated as follows.

Proof. Define the estimation error as θ̃i = θ̂i− θi, ∀i ∈ V .

Then, substituting (4) into (1) leads to the closed-loop system

q̈i = M−1

i

(

−kcsi + q̇ri + (θ̃i + θi)Yi − (Ciq̇i +Gi)
)

,

˙̃θi = −γiY
T

i si, i ∈ V . (6)

Consider a Lyapunov function candidate as V =

N
∑

i=1

Vi with

Vi =
1

2

∑

j∈Ni

aij‖qi − qj‖+
1

2
sT

iMi(qi)si +
1

2
γ−1

i θ̃T

i θ̃i, (7)

which is positive definite for t ≥ t0 based on Property

1. Taking the upper right-hand time derivative of V along

trajectories of systems (6) yields

D+V =
N
∑

i=1

(
∑

j∈Ni

aij
(qi − qj)

T

‖qi − qj‖
(q̇i − q̇j)

+ sT

iMi(qi)(q̈i − q̈ri) +
1

2
sT

iṀi(qi)si + θ̃T

iγ
−1

i θ̇i)

=
N
∑

i=1

(−
∑

j∈Ni

aijg
T

ij q̇i − kcs
T

isi +
∑

j∈Ni

aijs
T

igij

+ sT

i(θ̃i + θi)Yi − sT

iCiq̇i − sT

iGi − sT

iMi(qi)q̈ri

+
1

2
sT

iṀi(qi)si − θ̃T

iY
T

i si)

=

N
∑

i=1

(−kc
∑

j∈Ni

sT

isi −
∑

j∈Ni

aijg
T

ij q̇i

+ aijg
T

ij(q̇i − q̇ri) + sT

i(θ̃i + θi)Yi − sT

iGi

− sT

iCi(si + q̇ri)− sT

iMiq̈ri +
1

2
sT

iṀisi − θ̃T

iY
T

i si)

=

N
∑

i=1

(−kcs
T

isi −
∑

j∈Ni

aijg
T

ij

∑

j∈Ni

aijgij + sT

i(Yiθi

−Miq̈ri − Ciq̇ri −Gi) +
1

2
sT

i(Mi − 2Ci)si)

= −
N
∑

i=1

((kcs
T

isi + qT

riqri) ≤ 0, (8)

where the last equality holds based on Properties 2 and

3. Thus, system (6) is globally stable, which implies that

estimation errors θ̃i, ∀i ∈ V , bounded.

By the non-smooth LaSalle Invariance Principle [26, Theo-

rem 3.2, Chapter VII], the trajectories of system (6) converge

to an invariant set in which D+V = 0 holds. Then, we have

si = 0, qri = 0, and q̇ri =
∑

j∈Ni
aijgij = 0 in the invariant

set.

On the one hand, if gij = 0, it follows from (2) that

qi = qj . On the other, if gij 6= 0, i.e., qi 6= qj , it holds that
∑

j∈Ni
aijgij =

∑

j∈Ni
āij(qj − qi), where āij =

aij

‖qj−qi‖
.

Thus, it follows that (
∑

j∈Ni
āij)qi = (

∑

j∈Ni
āij)qj . Then,

we have qi =
∑

j∈Ni
ãijqj , where ãij =

āij∑
j∈Ni

āij
. Since

ãij > 0 and
∑

j∈Ni
ãij = 1, qi is in the convex hull spanned

by {qj}j∈Ni
. However, it is impossible for all robots to locate

inside a convex hull. Therefore, V̇ = 0 implies qi = qj ,

∀i ∈ V and j ∈ Ni.

Finally, since si = 0 and q̇ri = 0, then we have q̇i = 0 and

q̈i = 0, i.e., M−1

i −kcsi+q̇ri+(θ̃i+θi)Yi −(Ciq̇i+Gi)) = 0.

Therefore, qi(t)−qj(t), ∀i ∈ V , converge to zero as t → ∞.

Given that si and q̇ri also converge to zero and Property 3

holds, the estimation errors θ̃i, ∀i ∈ V , are convergent. The

proof is thus completed.

Theorem 1 provides a solution to Problem 1 concern-

ing systems (1), which is more general and fundamental

than existing rendezvous control approaches on kinematic

models, for example [1], [3], [4], [6]. In fact, robots are

viewed as moving points in the kinematic models including

single-integrator, double-integrator, and unicycle-type mobile

robots. However, a real robot is a rigid body with specific

size and shape, it is more practical to utilize dynamic model

to describe robots.

IV. CASE STUDY: RENDEZVOUS OF WHEELED MOBILE

ROBOTS WITH BEARING MEASUREMENTS

In this section, we consider a group of N dynamic wheeled

mobile robots for which the formation control problems have

been widely studied [27], [28]. The model of each mobile

robot i is illustrated in Fig. 1 and its planar motion is

described by the following kinematics

ẋoi = vi cosϕi, ẏoi = vi sinϕi, ϕ̇i = ωi, (9)

for i = 1, . . . , N , where vi and ωi are the linear and

angular velocity, respectively, and poi = [xoi, yoi]
T and ϕi

denote the position of the centroid and orientation of robot

i, respectively. Define a velocity vector as ηi = [vi, ωi]
T, and

the dynamics of mobile robot i can be described as

M̄iη̇i = ui, (10)

where M̄i = diag(mi, Ii) is the inertial matrix of robot i,
mi is the mass, Ii is the moment of inertia, and ui is the

force/torque control input.
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Fig. 1. Illustration of a unicycle-type wheeled mobile robot i

Fig. 2. Network topology

The position of robot i’s head is computed as

pi =

[

xi

yi

]

=

[

xoi

yoi

]

+ li

[

cosϕi

sinϕi

]

, (11)

where li is the distance between its head and centroid. Then,

we obtain the velocity of robot i’ head as follows,

ṗi =

[

cosϕi −li sinϕi

sinϕi li cosϕi

]

ηi. (12)

By inversion, we obtain

ηi = Ji(ϕi)ṗi, (16)

with the Jacobian matrix

Ji(ϕi) =

[

cosϕi sinϕi

−l−1

i sinϕi l−1

i cosϕi

]

. (17)

Substituting (21) into (10) yields the dynamics of robot i’
head as follows,

Mi(pi)p̈i + Ci(pi, ṗi)ṗi = τi, (18)

where

τi = J T

i ui, Mi =

[

Mi11 Mi12

Mi21 Mi22

]

, Ci =

[

Ci11 Ci12

Ci21 Ci22

]

,

with

Mi11 = mi cos
2 ϕi + Iil

−2

i sin2 ϕi,

Mi22 = mi sin
2 ϕi + Iil

−2

i cos2 ϕi,

Mi12 = Mi21 = (mi − Iil
−2

i ) sinϕi cosϕi,

Ci11 = (Iil
−2

i −mi)ωi sinϕi cosϕi,

Ci12 = miωi cos
2 ϕi + Iil

−2

i ωi sin
2 ϕi,

Ci21 = −miωi sin
2 ϕi − Iil

−2

i ωi cos
2 ϕi,

Ci22 = (mi − Iil
−2

i )ωi sinϕi cosϕi. (19)

It can be verified that Property 3 is satisfied with θi =
[mi, Iil

−2

i ]T, and Yi(pi, ṗi, a, b) with a = [a1, a2, a3]
T and

b = [b1, b2, b3]
T is defined in (20).

As mentioned in Remark 2, computing Yi(pi, ṗi, a, b) re-

quires only the real-time orientation ϕi and angular velocity

ωi in this case, rather than the full information of position

pi = [xi, yi]
T and velocity ṗi = [vi cosϕi, vi sinϕi]

T.

Note that Mi is unknown and dynamics (18) is a special

case of system (1) with Gi(qi) = 0, as the resistance of all

robots are not considered in this case. Then, rendezvous of

the networked wheeled mobile robots can be achieved, which

is summarized in the following corollary.

Corollary 1: Consider N networked wheeled mobile

robots in the form of (9) and (10), and a sensing network

satisfying Assumption 1. Define ṗri =
∑

j∈Ni
aij ḡij , ḡij =

(pj − pi)/‖pj − pi‖, s̄i = ṗi − ṗri, αi = [ṗT

ri, ϕi]
T, and

βi = [p̈T

ri, ωi]
T. The force/torque control law

τi = −kcs̄i + ṗri + Yi(pi, ṗi, αi, βi)θ̂i,

˙̂
θi = −γiY

T

i (pi, ṗi, αi, βi)s̄i, i ∈ V , j ∈ Ni, (21)

makes the relative displacement of robots i and j, i.e., pj(t)−
pi(t), ∀i ∈ V , j ∈ Ni, converge to zero as t → ∞ for all

initial states poi(t0) ∈ R
2, ϕi(t0) ∈ R, and ηi(t0) ∈ R

2.

Note that pi is not required in the control law (21), as (20)

shows that Yi(pi, ṗi, αi, βi) is independent of pi and ṗi.

The proof of Corollary 1 is omitted, since it can be done

by mimicking the proof of Theorem 1.

Remark 4: The solution to rendezvous problem of mul-

tiple wheeled mobile robots does not require the synchro-

nization of robots’ orientations, and only the head positions

should agree. Therefore, we define the position vector as

pi = [xi, yi]
T rather than q̄i = [xi, yi, ϕi]

T. In fact, the

normalized vector
q̄j−q̄i

‖q̄j−q̄i‖
is not a bearing in practice, and

is thus not considered in this case.

V. EXPERIMENTS

Laboratorial experiments on six TurtleBot3 Burger mobile

robots are conducted to show the effectiveness of control law

(21) for system (18). Due to the limited sensing capability

of TurtleBot3 Burger mobile robot, we use VICON indoor

positioning system, instead of real onboard cameras, to

localize all mobile robots. Then, the instantaneous angular

velocity and the relative bearings of neighboring robots,

required for the control law (21), are computed and transmit-

ted to each robot by VICON system. Although there is no

Yi(pi, ṗi, a, b)=

[

(a1 + b2b3) cos
2 a3 + (a2 − b1b3) sin a3 cos a3 (a1 + b2b3) sin

2 a3 + (−a2 + b1b3) sin a3 cos a3
(a1 + b2b3) sin a3 cos a3 + (a2 − b1b3) sin

2 a3 −(a1 + b2b3) sin a3 cos a3 + (a2 − b1b3) cos
2 a3

]

. (20)
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communication among six mobile robots, yet this VICON-

based multi-robot platform is capable enough to examine the

effectiveness of the proposed decentralized control law in the

presence of many practical issues, such as motor offset, wear

and tear of wheels, delays, and some external environmental

perturbations, such as noise and friction.

In fact, it is impractical and impossible for mobile robots

with sizes and shapes to share one point, that is, it holds that

pi 6= pj for all t ≥ t0, i ∈ V , and j ∈ Ni. For such real multi-

robot systems, similar to the experiment conducted in [19],

we set a proximity threshold δ > 0 to determine whether

two robots are sufficiently close. The value of δ is chosen

according to the size of the mobile robots. If the distances

of any two neighboring robots are less than δ, rendezvous is

viewed to be achieved. Based on this, we define a practical

bearing as

g̃ij =

{

pi−pj

‖pj−pi‖
, ‖pj − pi‖ > δ,

0, ‖pj − pi‖ ≤ δ.
(22)

The definition of g̃ij shows that, the relative bearings be-

tween two robots are viewed as zero if they locate sufficiently

close. For each robot, if all the bearings with respect to its

neighbors become zero, its force/torque controller will be

set to zero. Consequently, robot stops if all its neighbors are

sufficiently close. Moreover, since the underlying topology

is a connected undirected graph, each robot stops if and

only if all robots are sufficiently close. As a result, the

networked multi-robot systems are stabilized if and only if

the rendezvous is achieved.

Note that the system parameters of TurtleBot3 Burger

mobile robot are unknown and they are not utilized in the

controllers. The given network topology is shown in Fig.

2. The resulting linear and angular velocity driven by the

virtual controller are computed by (21), which is used as the

control input to the robots. Set the control gains kc = 5,

γi = 0.5, and aij = 1 for all i ∈ V , j ∈ Ni. Set the initial

velocity and estimation values as q̇i(t0) = 0 and θ̂i(t0) = 0
for all i ∈ V . The initial positions and orientations of robots

are set randomly. Moreover, based on the size of TurtleBot3

robots, the proximity threshold is set as δ = 0.6m. To record

whether the rendezvous of multi-robot systems has been

achieved, we set a flag as

∆ =

{

1, g̃ij = 0, (i, j) ∈ E ,

0, else.
(23)

In Experiment 1, the initial positions and orientations of

all mobile robots are set randomly. As Fig. 3 illustrates, six

controlled mobile robots achieve the rendezvous in practice.

Due to the size of robots, the relative distances are conver-

gent but do not converge to zero. The trajectories during

rendezvous process are shown in Fig. 4. Fig. 5 shows that

total distance among neighboring agents converges to a finite

value, and Fig. 6 shows that the evolution of velocities vi.
The change of rendezvous flag is given in Fig. 7.

In Experiment 2, firstly rendezvous of mobile robots is

achieved and the networked multi-robot systems are stabi-

Fig. 3. Snapshots of on-site multi-robot systems in Experiment 1
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lized, and then we remove one robot and put it away from

the original rendezvous point at t = 28s, as shown in Fig.

8. As Fig. 9 shows, after the interruption, the six mobile

robots are converging to a new point and achieve rendezvous

again, which demonstrates the global convergence of the

multi-robot systems with control law (21). Fig. 10 shows

that total distance among neighboring agents converges to a

finite value, and Fig. 11 shows that the evolution of velocities

vi. The change of rendezvous flag is given in Fig. 12.

Remark 5: Collision avoidance is not considered in the

setup of Problem 1 and the design of (4). In the existing

works on rendezvous problem [3], [4], [6], the notion “Robot

Merge” was proposed to theoretically handle the collision

avoidance, where it was assumed that two robots would

merge into a new robot if they were sufficiently close. It

is obviously impossible for real robots. In [19] where the

bearing-based formation control law was also implemented,

a behavior-based switching algorithm was adopted to avoid

collisions in the experiment. If two robots were too close,

they would move away from each other, which also relies

on the proximity perception. However, it is obvious that

the behavior-based approach is suitable for formation prob-

lem and is essentially contradictory to rendezvous problem,

since it is difficult for robots to determine whether the

neighbors tend to collide or to rendezvous. To the best of

our knowledge, collision avoidance in rendezvous control

problem remains open. In fact, as the experimental results

show, since our control law guarantees a globally convergent

closed-loop system, rendezvous can still be achieved even if

some collisions occur.

VI. CONCLUSIONS

In this paper, an adaptive control approach has been pro-

posed for the networked uncertain dynamic robotic systems

to solve rendezvous problem by distributed control with

bearing measurements. The network topology of the multi-

robot systems is described by an undirected graph, and only

relative bearings are measured among the neighboring robots.

The proposed approach is then used to achieve rendezvous of

dynamic nonholonomic wheeled mobile robots, and is also il-

lustrated by experiments on TurtleBot3 Burger mobile robots.

In the future, formation control with bearing measurements

will be investigated, conditions for connectivity preservation

and collision avoidance will be studied, and a vision-based

platform to achieve fully decentralized control of multi-robot

systems will also be built.
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