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Abstract—In this article, the finite-time cooperative control
problem for leader-following bearing-defined formation track-
ing of multiagent systems with double-integrator dynamics is
investigated. Different from the existing works on finite-time con-
tainment control, our objective is to make followers track leaders’
trajectories and form a shape-preserving formation rather than
a convex hull. The target formation is defined by both lead-
ers’ motions and bearing constraints among neighboring agents,
which enables the formation not only to form and preserve a
geometric pattern but also to have the ability to achieve both
translational and scaling formation maneuver. To satisfy the
bearing constraints, a matrix-weighted estimator/controller is
developed. The finite-time stabilization of the target formation is
achieved, though the matrix-weighted design makes the stability
analysis complicated. Finally, an illustrative example is presented
to demonstrate the effectiveness.

Index Terms—Bearing-defined formation, cooperative control,
finite-time control, tracking control.

I. INTRODUCTION

F INITE-TIME control has attracted a significant amount
of research attention [1]–[3], and has been applied to the

consensus or formation control of multiagent systems [4]–[10].
Particularly, in [4], an estimator-based control approach was
designed for leader-following consensus of double-integrators
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with one single leader. This approach was extended in [6] to
the case with multiple leaders, which shows that all followers
converge to a convex hull spanned by the leaders but the geo-
metric pattern of the followers in the convex hull cannot be
determined. However, by the containment control algorithm
proposed in [6], not only the leader-following formation with
a desired geometric structure cannot be formed but also it is
difficult to achieve the formation maneuver.

To this end, the objective of this article is to achieve a
bearing-defined target formation of double-integrators with
multiple leaders in finite time. Recently, the bearing-based for-
mation control has been a growing research interest (see for
example [11]–[17]), in which the target formation is defined
by the interagent bearings. For the leader-following formation,
a desired geometric pattern can be uniquely determined by
the leaders and the bearing constraints with respect to neigh-
boring agents, based on the bearing rigidity theory [11] and
bearing-based network localizability [18]. More importantly,
since the bearing constraints are invariant to both translation
and scaling of a formation, it is much easier to use the bearing-
based approach to achieve translation and scaling formation
maneuver than the displacement-based ones, such as [4], [6],
and [19] or the distance-based ones, such as [20] and [21].
The formation maneuver could be steered by the leaders’
motions, during which the geometric structure of the formation
can be changed and the bearing constraints can be preserved.
With such formation maneuverability, the multiagent systems
can cooperatively respond to the complex environments; for
instance, they can change the scale of the formation to avoid
the obstacles, which has been shown in [12]. However, the
finite-time control has not been achieved in all the aforemen-
tioned works on bearing-based formation control problems.
In fact, the closed-loop systems with finite-time convergence
usually demonstrate better disturbance rejection properties and
better robustness against uncertainties. In [22], a finite-time
control algorithm is developed to solve the leaderless bearing-
based formation control problem where the target formation
is stationary. Although bearing-based control protocols were
proposed in [23] and [24] to achieve the leader-following for-
mation control with prescribed convergent time, yet the target
formations are still stationary and thus, lack of formation
maneuverability. To the best of our knowledge, few works
have studied the finite-time control for the bearing-defined
formation tracking problem with multiple moving leaders.
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In this article, the finite-time cooperative control problem
for leader-following formation tracking of multiagent systems
with double-integrator dynamics is considered. The underly-
ing network topology of the multiagent systems is described
by a multiple rooted graph including an undirected subgraph,
and the leaders denoted by the roots move with time-varying
velocities. We develop a matrix-weighted controller based on
the one in [6], such that the bearing constraints can be sat-
isfied. Especially, a novel estimator-based control approach is
developed to solve the finite-time bearing-defined formation
tracking control problem.

The contributions of this article are summarized as fol-
lows. First, the proposed approach makes the multiagent
systems converge to a bearing-defined formation in finite time,
while only asymptotic or exponential stability was achieved
in [11]–[17]. Second, in contrast to [22]–[24] where sta-
tionary target formations were achieved in finite time, the
proposed approach makes followers track multiple dynamic
leaders and form a moving-target formation in finite time,
which enables the multiagent systems to achieve formation
maneuver. Third, compared with [6] where the followers con-
verge to a convex hull, our approach makes the multiagent
systems converge to a formation with the specific geomet-
ric pattern defined by the bearing constraints. To satisfy the
bearing constraints, a controller with matrix-weighted neigh-
bor’s information is developed and the finite-time stability of
the closed-loop system is established. Thus, the stability anal-
ysis is much more complicated than that in [6] due to the
matrix weights. Moreover, a novel estimator is designed for
each follower such that its desired velocity in the bearing-
defined formation can be estimated in finite time. Remarkably,
different from [6] where each follower is required to compute
and transmit the derivative of the estimate at the same time, the
transmission of neighbors’ updated values is not required for
followers. Finally, unlike [6] where the positions, velocities,
and accelerations of all leaders are assumed to be bounded for
all time, our approach only requires the accelerations of the
leaders to be bounded, which relaxes the assumption on the
leaders’ motion and improves the practical feasibility.

The remainder of this article is organized as follows.
Section II presents the preliminaries and the problem formu-
lation. Section III presents the proposed dynamic control law
with an estimator. Section IV shows an illustrative example
and finally, Section V draws the conclusion.

II. PRELIMINARIES AND PROBLEM FORMULATION

A. Notations

Given a real vector x = [x1, . . . , xn]T ∈ R
n, denote

|x| = [|x1|, . . . , |xn|]T , sign(x) = [sgn(x1), . . . , sgn(xn)]T , and
sigα(x) = [sgn(x1)|x1|α, . . . , sgn(xn)|xn|α]T , where sgn(·) is
the standard sign function and | · | is the absolute value of a
scalar. Let xα = [xα

1 , . . . , xα
n ]T . Define three kinds of norms

for vector x as ‖x‖∞ = max1≤j≤n |xj|, ‖x‖1 = ∑n
j=1 |xj|, and

‖x‖ = √
xTx. For a matrix A ∈ R

n×n, let ‖A‖ be its 2-norm.
Denote [A]m and [A]m, m ∈ {1, . . . , n} as the mth column
vector and mth row vector, respectively. Let Id be the identity
matrix, where d represents the dimension. Let Om×n be the

null matrix of m×n order. Throughout this article, we use the
superscript “∗” to express the corresponding desired vectors,
for example, x∗ denotes the desired value of x. The subscripts
“l” and “f ” of vectors represent the vector quantities of leaders
and followers, respectively.

B. Graph Description

Consider n agents in R
d, d ≥ 2, consisting of nf followers

and nl = n − nf ≥ 2 leaders, which are indexed by two sets
Vf = {1, . . . , nf } and Vl = {nf + 1, . . . , n}, respectively. The
followers are modeled as double-integrators, that is

ṗi = vi, v̇i = ui, i ∈ Vf (1)

where pi and vi denote the position and velocity of agent i,
respectively, and ui is the acceleration and is also the control
input to be designed based on the information of its neighbors.
Moreover, the leaders’ dynamics are given by

ṗj = vj, j ∈ Vl (2)

where vj is the time-varying velocity given a priori to steer
the formation maneuver and it is supposed to be piecewise
continuously differentiable.

The network topology of the multiagent systems is
described by an nl-rooted graph G = (V, E) including an
undirected subgraph Gf = (Vf , Ef ), where V = Vl ∪ Vf is
the node set and E = {(j, i) : j �= i, i, j ∈ V} is the edge
set, and Ef = {(j, i) : j �= i, i, j ∈ Vf } is the followers’ edge
set. The nl leaders are denoted by the roots with no incoming
edges because they move autonomously. As a result, graph
G is hybrid since the edges between the leaders and the fol-
lowers are unidirectional, while the edges among followers
are bidirectional. The set including the neighbors of agent i
is denoted as Ni = {j ∈ V : (i, j) ∈ E}. Mapping the node
i of graph G to pi for all i ∈ V yields a formation FG(p),
where p = [pT

1 , . . . , pT
n ]T is the configuration of the multiagent

systems. The bearing between two neighboring agents i and j
is defined as gij = (pj − pi)/(‖pj − pi‖), (i, j) ∈ E . Define an
orthogonal projection matrix as Pg∗

ij
= Id − g∗

ij(g
∗
ij)

T , where g∗
ij

is the desired bearing between agents i and j. To describe the
property of the graph with the desired bearing constraints, a
bearing Laplacian matrix B [18] was defined as

[B]ij =
⎧
⎨

⎩

Od×d, i �= j, (i, j) /∈ E
−Pg∗

ij
, i �= j, (i, j) ∈ E

∑
k∈Ni

Pg∗
ik
, i = j, i ∈ V .

Partition B as B =
[Bff Bfl

Blf Bll

]

, where Blf = Odnl×dnf and Bll =
Odnl×dnl hold, since the edges between the leaders and the
followers are unidirectional. Moreover, since the edges among
followers are bidirectional, Bff is symmetric.

C. Problem Formulation

The target formation FG(p∗(t)) satisfies following
requirements:

1) Bearings: (p∗
j (t)−p∗

i (t))/‖p∗
j (t)−p∗

i (t)‖ = g∗
ij,(i, j) ∈ E ,

2) Leaders: p∗
l (t) = pl(t), v∗

l (t) = vl(t),
where pl = [pT

nf +1, . . . , pT
n ]T and vl = [vT

nf +1, . . . , vT
n ]T .

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on September 11,2023 at 03:29:13 UTC from IEEE Xplore.  Restrictions apply. 



ZHAO et al.: FINITE-TIME COOPERATIVE CONTROL 13365

Then, the finite-time cooperative control problem for
bearing-defined formation tracking is stated as follows.

Problem 1: Consider the multiagent systems with n agents
and the network topology G. The leaders’ motions [pT

l , vT
l ]T ∈

R
2dnl and the bearing constraints g∗

ij, (i, j) ∈ E are given a
priori. For each follower i in (1) with any initial positions
pi(t0) ∈ R

d and velocities vi(t0) ∈ R
d, find a dynamic control

law in the form of

ρ̇i = �
(
ρi, ρj

)

ui = σ
(

pi − pj, vi, ρi, g∗
ij

)
, i ∈ Vf , j ∈ Ni (3)

such that the target formation FG(p∗(t)) can be achieved in
finite time, that is, pf (t) = p∗

f (t), vf (t) = v∗
f (t), and gij(t) = g∗

ij,
t ≥ T for some T ≥ t0, where pf = [pT

1 , . . . , pT
nf

]T , vf =
[vT

1 , . . . , vT
nf

]T , ρi is an internal state to be designed, and �(·)
and σ(·) are two sufficiently smooth functions to be designed.

To solve Problem 1, we need the following assumptions.
Assumption 1: The network G with bearing constraints

g∗
ij, (i, j) ∈ E , and the leaders’ motion [pT

l , vT
l ]T ensure a

unique target formation FG(p∗(t)).
Assumption 2: The accelerations of the leaders are

bounded, that is, ‖v̇l(t)‖ ≤ δ for t ≥ t0, with a positive
constant δ.

Remark 1: Assumption 1 is necessary for solving a bearing-
based formation control problem, since any nonunique for-
mation cannot be guaranteed to achieve by any control
approaches [18]. Only when the bearing-defined target forma-
tion is unique, then the desired position and velocity of each
follower can be uniquely determined. To satisfy Assumption 1,
the network G with bearing constraints g∗

ij, (i, j) ∈ E needs
to be bearing rigid and every infinitesimal bearing motion
involves at least one leader, based on the bearing rigidity the-
ory [11], [18] and for details therein. Moreover, it has been
shown in [11] that the graph G is connected if Assumption 1
is satisfied.

Remark 2: In the displacement-based formation control, the
uniqueness of displacement-defined formation is independent
of the network topology, since the desired position of each fol-
lower can be uniquely determined by its desired displacement
with respect to the leader [19]. In the distance-based forma-
tion control, the network with distance constraints is assumed
to be infinitesimally distance rigid so as to ensure a unique
desired formation [20], [21]. However, both the displacement
constraints and the distance constraints are not invariant to
formation scaling. As a result, it is not convenient for the
formation to achieve scaling maneuver via the displacement-
or distance-based manners. Since the bearing constraints are
invariant to both formation translation and scaling, the bearing-
based formation control exhibits its merit in translational and
scaling formation maneuver.

Remark 3: Assumption 2 is required for developing a finite-
time estimator, as well as for ensuring the global boundedness
of the closed-loop system in finite time. In [6], all of lead-
ers’ positions, velocities, and accelerations are assumed to
be bounded for t ≥ t0, which implies that the leaders have
to move in a limited region, while we only assume that the

leaders’ accelerations are bounded. Besides, although bearing-
based control approaches were developed in [23] and [24] to
achieve finite-time convergence, they can be applied to only
the scenario with static leaders yet. Thus, the leaders’ motion
is less restrictive in this article.

III. MAIN RESULTS

In this section, the finite-time cooperative control for
bearing-based formation tracking problem, that is, Problem 1,
is solved by an estimator-based control approach. We first
design a finite-time estimator for each follower such that its
desired tracking velocity is estimated. Then, we develop an
acceleration controller based on the designed estimator such
that the bearing-based finite-time stabilization is achieved.

A. Bearing-Based Finite-Time Estimator

To form a shape-preserving formation, each follower has
its desired position and desired tracking velocity, that is, p∗

i
and v∗

i , i ∈ Vf . By [18, Th. 1], since the bearing-defined target
formation is unique under Assumption 1, the bearing Laplacian
submatrix Bff is nonsingular, and the desired positions and
velocities of the followers can be uniquely determined as

p∗
f (t) = −B−1

ff Bflpl(t), v∗
f (t) = −B−1

ff Bflvl(t). (4)

However, both p∗
i and v∗

i are unknown to agent i. To estimate
the desired tracking velocity v∗

i of each follower, we design a
bearing-based finite-time estimator as

˙̂vi = −ν1sign

⎛

⎝
∑

j∈Ni

Pg∗
ij

(
v̂i − v̂j

)
⎞

⎠

− ν2sigμ

⎛

⎝
∑

j∈Ni

Pg∗
ij

(
v̂i − v̂j

)
⎞

⎠, i ∈ Vf (5)

where the constants ν1, ν2, and μ satisfy ν1 >

δ‖Bfl‖/λmin(Bff ), ν2 > 0, and μ > 1, respectively. By default,
we set v̂j = vj for all j ∈ Vl, that is, v̂l = [v̂T

nf +1, . . . , v̂T
n ]T = vl

by the definition of FG(p∗(t)). In other words, the leaders are
required to transmit their velocities to their neighboring fol-
lowers via communication, which is the same setting as that
in [4], [6], and [12]. Moreover, the initial estimate of each
follower v̂i(t0), i ∈ Vf , can be arbitrarily set. In fact, although
the value to the initial estimate v̂i(t0) can be arbitrarily cho-
sen, in the implementation of the control law consisting of (5)
and (19), we can set the initial value of v̂i(t) in a feasible
range, since v̂i(t) is used to estimate the desired velocity v∗

i .
With the estimator (5), we have the following proposition.
Proposition 1: If Assumptions 1 and 2 are satisfied, the

estimator (5) makes v̂i, i ∈ Vf , globally converge to v∗
i in

a fixed time T0.
Proof: Define the estimation error as ei = v̂i − v∗

i and e =
[eT

1 , . . . , eT
nf

]T . It follows from (4) that Bff v∗
f +Bflv∗

l = 0 holds.
Then, the desired velocities v∗

i , i ∈ Vf satisfy
∑

j∈Ni

Pg∗
ij
(v∗

i − v∗
j ) = 0. (6)
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Then, we have
∑

j∈Ni

Pg∗
ij

(
v̂i − v̂j

) =
∑

j∈Ni

Pg∗
ij

((
ei + v∗

i

)−
(

ej + v∗
j

))

=
∑

j∈Ni

Pg∗
ij

((
ei − ej

)+
(

v∗
i − v∗

j

))

= Bff e + Bfl
(
v̂l − v∗

l

)
. (7)

Since we set v̂l = v∗
l = vl, then, it holds that
∑

j∈Ni

Pg∗
ij

(
v̂i − v̂j

) = Bff e. (8)

Thus, the estimation error system is written as

ė = −ν1sign
(Bff e

)− ν2sigμ
(Bff e

)− v̇∗
f . (9)

Consider a Lyapunov function candidate

U = ν11T
dnf

∣
∣Bff e

∣
∣+ ν2

μ + 1
1T

dnf

∣
∣Bff e

∣
∣μ+1 (10)

which is differentiable almost everywhere expect in the set
S = {e :

∏nf
i=1 ei = 0}. Taking the time derivative of U along

the trajectory of system (9) gives

U̇ = −
[
ν1sign

(Bff e
)+ ν2sigμ

(Bff e
)+ v̇∗

f

]T

× Bff
[
ν1sign

(Bff
)+ ν2sigμ

(Bff e
)]

. (11)

Let y = Bff e. Under Assumption 1, the graph G is con-
nected [11]. For the connected graph G with an undirected
subgraph Gf , there exists at least one leader that has a path
to each follower, which makes the matrix Bff positive def-
inite by [6, Lemma 5]. Moreover, it follows from (4) that
Bff v̇∗

f = −Bflv̇l

U̇ ≤ −λmin
(Bff

)∥
∥ν1sign(y) + ν2sigμ(y)

∥
∥2

− [
ν1sign(y) + ν2sigμ(y)

]TBflv̇l

≤ −λmin
(Bff

)
dnf∑

k=1

(
ν2

1 + 2ν1ν2|yk|μ + ν2
2 |yk|2μ

)

+ δ
∥
∥Bfl

∥
∥

dnf∑

k=1

(
ν1 + ν2|yk|μ

) ≤ −ε1Ũ (12)

where ε1 = min{ν2λmin(Bff ), ν1(ν1λmin(Bff ) − δ‖Bfl‖),
ν2(2ν1λmin(Bff ) − δ‖Bfl‖)}, and

Ũ =
dnf∑

k=1

(
|yk|2μ + |yk|μ + 1

)
. (13)

Choose ν1 > δ‖Bfl‖/λmin(Bff ). Then, we have ε1 > 0. By [25,
Lemma 5], it holds that

Ũ ≥ 1

2

(
2nf
) 1−μ

1+μ Ū
2μ

μ+1 + 1

2
Ū

μ
μ+1 (14)

where Ū = ∑dnf
k=1(|yk|μ+1 + |yk|). It follows from (10) that

U =
dnf∑

k=1

(

ν1|yk| + ν2

μ + 1
|yk|μ+1

)

≤ ε2Ū (15)

where ε2 = max{ν1, ν2/(μ + 1)}. By (12), (14), and (15), we
have

U̇ ≤ −ς1U
2μ

μ+1 − ς2U
μ

μ+1 (16)

where ς1 = (ε1(2dnf )
(1−μ)/(1+μ))/(2ε

(2μ)/(1+μ)

2 ) and ς2 =
ε1/2ε

μ/(μ+1)

2 . By [26, Th. 5], system (9) is finite-time stable
with the settling time T0 = (μ + 1)/ς1(μ − 1) + (μ + 1)/ς2.
Therefore, e(t) converges to zero in the fixed time T0, that
is, v̂f converges to v∗

f in the fixed time T0, where v̂f =
[v̂T

1 , . . . , v̂T
nf

]T .
Remark 4: The design of estimator (5) is inspired by [27].

One requirement of implementing this estimator is that the
parameter ν1 needs to be sufficiently large such that ν1 >

δ‖Bfl‖/λmin(Bff ) is satisfied. In fact, the estimator (5) can be
incorporated with the adaptive protocol [28] to achieve a fully
distributed estimation. Moreover, the design of estimator (5)
only requires each agent to transmit the estimated desired
velocities v̂j, j ∈ Vf , to its neighbors. In [6], the transmis-
sion of ˙̂vj, j ∈ Vf , is, in addition, required. Given the fact
that it is impractical to conduct the computation and transmis-
sion of the information ˙̂vj at the same time, the estimator (5)
exhibits its merit over that in [6].

Remark 5: There may exist chattering phenomenon near
the equilibrium, since the sign function sign(·) on the right-
hand side of the sliding-mode-like estimator (5) is non-
Lipschitz, even though it would not influence the finite-time
convergence of the estimate error system (9). Note that the
continuous function sig(·) in (5) is chattering free according
to [29]. To weaken the chattering brought by the sign function
sign(·), the estimator (5) can be modified as

˙̂vi = −ν1satε

⎛

⎝sign

⎛

⎝
∑

j∈Ni

Pg∗
ij

(
v̂i − v̂j

)
⎞

⎠

⎞

⎠

− ν2sigμ

⎛

⎝
∑

j∈Ni

Pg∗
ij

(
v̂i − v̂j

)
⎞

⎠ (17)

where ε ≥ 1 is a given positive constant, and satε(·) is a
saturation function defined by

satε(x) =
{

x, ‖x‖ ≤ ε

εsign(x), ‖x‖ > ε.
(18)

By mimicking the proof of [5, Th. 3], it can be shown that the
resulting estimate error system under (17) is also finite-time
convergent. Due to the page limit, the detail is omitted.

B. Finite-Time Tracking Subject to Bearing Constraints

Based on the estimator (5), we further develop a bearing-
based acceleration controller as follows:

ui = ˙̂vi − k2

⎛

⎝
(
vi − v̂i

)1/α + k1/α

1

∑

j∈Ni

Pg∗
ij

(
pi − pj

)
⎞

⎠

2α−1

(19)

where k1 and k2 are two positive control gains satis-
fying k1 ≥ 21−α/(α + 1) + dα(n + nf )/(α + 1) + k3,
k2 ≥ (2 − α)21−αk1+1/α

1 (21−α/(α + 1) +
(d(21−αα(n + 1) + (n + nf )(k1 + 21−α))/k1(α + 1)) + k3),
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k3 > 0, and the constant α satisfies 1/2 < α = α1/α2 < 1,
with α1 and α2 being positive odd integers.

Before the finite-time stabilization of the closed-loop system
is presented, we first provide the following proposition, which
shows that the trajectories of the closed-loop system are
bounded during the time period [t0, t0 + T0].

Proposition 2: Under Assumptions 1 and 2, for the trajec-
tories of the multiagent systems (1) driven by the control law
consisting of (5) and (19), pf (t) and vf (t) are bounded for
t ∈ [t0, t0 + T0].

Proof: The proof is given in Appendix B.
Next, define the tracking errors as p̄i = pi − p∗

i , v̄i = vi −
v∗

i , and the compact tracking errors as p̄ = [p̄T
1 , . . . , p̄T

nf
]T ,

v̄ = [v̄T
1 , . . . , v̄T

nf
]T . By Propositions 1 and 2, we have v̂i = v∗

i
for t ≥ t0 + T0. Similar to (7), we have

∑

j∈Ni

Pg∗
ij

(
p̄i − p̄j

) =
∑

j∈Ni

Pg∗
ij

(
pi − pj

)
.

With the facts above, substituting (19) into (1) yields the
following error system:

˙̄pi = v̄i

˙̄vi = −k2

⎛

⎝v̄1/α
i + k1/α

1

∑

j∈Ni

Pg∗
ij

(
p̄i − p̄j

)
⎞

⎠

2α−1

. (20)

Now, we present the main result of this article, which
establishes the finite-time stability of the resulting closed-loop
system.

Theorem 1: If Assumptions 1 and 2 are satisfied, the control
law consisting of (5) and (19) makes the tracking errors p̄f and
v̄f of system (20) converge to zero in finite time.

Proof: Consider the Lyapunov function V = V0 +∑nf
i=1 Vi,

with

V0 = 1

2
p̄T

f Bff p̄f , Vi =
d∑

m=1

Vim (21)

Vim = 1

(2 − α)21−αk1+1/α

1

∫ v̄im

ṽim

(s1/α − ṽ1/α
im )2−αds (22)

ṽi = −k1wα
i , wi =

∑

j∈Ni

Pg∗
ij

(
p̄i − p̄j

)
. (23)

First, taking the time derivative of V0 along the trajectories
of system (20) gives

V̇0 = p̄T
f Bff ˙̄pf = (Bff p̄f

)T
v̄f

=
nf∑

i=1

⎡

⎣
∑

j∈Ni

Pg∗
ij

(
p̄i − p̄j

)
⎤

⎦

T

v̄i =
nf∑

i=1

wT
i v̄i (24)

since
∑

j∈Ni
Pg∗

ij
(p̄i − p̄j) = Bff p̄f + Bflp̄l and Bflp̄l = Bfl(pl −

p∗
l ) = 0. Then, we have

V̇0 =
nf∑

i=1

wT
i (ṽi + (v̄i − ṽi))

= −k1

nf∑

i=1

wT
i wα

i +
nf∑

i=1

wT
i (v̄i − ṽi)

≤ −k1

nf∑

i=1

d∑

m=1

wα+1
im +

nf∑

i=1

d∑

m=1

|wim||v̄im − ṽim|. (25)

Let ξi = v̄1/α
i − ṽ1/α

i = [ξi1, . . . , ξid]T . It follows from
Lemma 1 that

|v̄im − ṽim| ≤ 21−α
∣
∣
∣v̄

1/α
im − ṽ1/α

im

∣
∣
∣
α = 21−α|ξim|α. (26)

Then, we have

V̇0 ≤ −k1

nf∑

i=1

d∑

m=1

wα+1
im + 21−α

nf∑

i=1

d∑

m=1

(
wα+1

im

α + 1
+ αξα+1

im

α + 1

)

=
nf∑

i=1

d∑

m=1

(

−
(

k1 − 21−α

α + 1

)

wα+1
im + α21−α

α + 1
ξα+1

im

)

(27)

where the inequality is obtained by Lemma 2.
Second, taking the time derivative of Vim along the trajec-

tories of system (20) gives

V̇im = − 1

21−αk1+1/α

1

dṽ1/α
im

dt

∫ v̄im

ṽim

(
s1/α − ṽ1/α

im

)1−α

ds

+ ξ2−α
im ūim

(2 − α)21−αk1+1/α

1

(28)

where ūim is the mth component of ūi, and ūi = ˙̄vi. Moreover,
we have the following facts that:
∫ v̄im

ṽim

(
s1/α − ṽ1/α

im

)1−α

ds ≤ |v̄im − ṽim||ξim|1−α ≤ 21−α|ξim|

and

dṽ1/α
im

dt
= −k1/α

1

∑

j∈Ni

[
Pg∗

ij

(
v̄i − v̄j

)]

m

= −k1/α

1

⎛

⎝
∑

j∈Ni

[
Pg∗

ij

]m
v̄i −

∑

j∈Ni

[
Pg∗

ij

]m
v̄j

⎞

⎠

≤ k1/α

1

∑

j∈Ni

∥
∥
∥
[
Pg∗

ij

]m∥∥
∥∞‖v̄i‖1

+ k1/α

1

nf∑

j=1

∥
∥
∥
[
Pg∗

ij

]m∥∥
∥∞
∥
∥v̄j
∥
∥

1.

Since Pg∗
ij

is an orthogonal projection matrix for all (i, j) ∈ E ,
it holds that ‖[Pg∗

ij
]m‖∞ ≤ ‖[Pg∗

ij
]m‖ ≤ ‖Pg∗

ij
‖ = 1. It follows

that

dṽ1/α
im

dt
≤ k1/α

1

⎛

⎝n‖v̄i‖1 +
nf∑

j=1

∥
∥v̄j
∥
∥

1

⎞

⎠. (29)

Then, we have

V̇im ≤ 1

k1

⎛

⎝n‖v̄i‖1 +
nf∑

j=1

∥
∥v̄j
∥
∥

1

⎞

⎠|ξim|

+ ξ2−α
im ūim

(2 − α)21−αk1+1/α

1

. (30)

Consider ‖v̄i‖1 = ∑d
ι=1 |v̄iι|, where viι is the ι-component of

v̄i. By Lemma 1, |v̄iι| satisfies

|v̄iι| ≤ |ṽiι| + |v̄iι − ṽiι| ≤ k1|wiι|α + 21−α|ξiι|α.
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Then, it follows from Lemma 2 that:

‖v̄i‖1|ξim| ≤
d∑

ι=1

(
k1|wiι|α + 21−α|ξiι|α

)
|ξim|

≤
d∑

ι=1

(
k1α

α + 1
wα+1

iι + 21−αα

α + 1
ξα+1

iι

+ k1 + 21−α

α + 1
ξα+1

im

)

. (31)

As ūi = −k2ξ
2α−1
i , we have ūim = −k2ξ

2α−1
im . By (27), (31),

and (32), we obtain

V̇im ≤
d∑

ι=1

(
αn

α + 1
wα+1

iι + 21−ααn

k1(α + 1)
ξα+1

iι

)

+ α

α + 1

d∑

ι=1

nf∑

j=1

wα+1
jι + 21−αα

k1(α + 1)

d∑

ι=1

nf∑

j=1

ξα+1
jι

+
(

d
(
n + nf

)(
k1 + 21−α

)

k1(1 + α)
+ −k2

(2 − α)21−αk1+1/α

1

)

ξα+1
im .

Then, it follows from V̇i = ∑d
m=1 V̇im that:

V̇i ≤ d
d∑

ι=1

(
αn

α + 1
wα+1

iι + 21−ααn

k1(α + 1)
ξα+1

iι

)

+ dα

α + 1

d∑

ι=1

nf∑

j=1

wα+1
jι + 21−αdα

k1(α + 1)

d∑

ι=1

nf∑

j=1

ξα+1
jι

+
d∑

m=1

(
d
(
n + nf

)(
k1 + 21−α

)

k1(1 + α)

)

ξα+1
im

+
d∑

m=1

(
−k2

(2 − α)21−αk1+1/α

1

)

ξα+1
im .

As a result, with V̇ = V̇0 +∑nf
i=1 V̇im, we have

V̇ ≤ C1

nf∑

i=1

d∑

m=1

wα+1
im + C2

nf∑

i=1

d∑

m=1

ξα+1
im (32)

where

C1 = −k1 + 21−α

α + 1
+ dα(n + nf )

α + 1

C2 = d
(
21−αα(n + 1) + (

n + nf
)(

k1 + 21−α
))

k1(α + 1)
+ 21−αα

α + 1

− k2

(2 − α)21−αk1+1/α

1

.

Because k1, k2, and k3 satisfy

k1 ≥ 21−α

α + 1
+ dα

(
n + nf

)
α + 1

+ k3

k2 ≥ (2 − α)21−αk1+1/α

1 (C3 + k3)

C3 = 21−α

α + 1
+ d

(
21−αα(n + 1) + (

n + nf
)(

k1 + 21−α
))

k1(α + 1)

k3 > 0

it holds that

V̇ ≤ −k3

n∑

i=1

d∑

m=1

(
wα+1

im + ξα+1
im

)
(33)

which is negative definite since α +1 satisfies α1 +1 = (α1 +
α2)/α2 and α1 + α2 is even.

Third, it follows from (23) that: wf = [wT
1 , . . . , wT

nf
]T =

Bff p̄f . Accordingly, it holds that

∥
∥wf

∥
∥2 =

nf∑

i=1

wT
i wi = p̄T

f B2
ff p̄f .

Then, we have

∥
∥wf

∥
∥2 ≥ λmin

(
B2

ff

)
p̄T

f p̄f ≥
2λmin

(
B2

ff

)
V0

λmax
(Bff

) . (34)

Moreover, it follows from (22) and (26) that:

Vi ≤ 1

(2 − α)k1+1/α

1

d∑

m=1

|ξim|2. (35)

By (34) and (35), we obtain

V ≤ c

nf∑

i=1

d∑

m=1

(
w2

im + ξ2
im

)

≤ c

nf∑

i=1

d∑

l=1

(
wα+1

il + ξα+1
il

)2/(α+1)

(36)

where c = max{λmax(Bff )/2λmin(B2
ff ), 1/(2 − α)k1+1/α

1 }, and
the last inequality is due to Lemma 1.

Finally, by (32) and (36), we have

V̇ + k3

c(α+1)/2
V(α+1)/2 ≤ 0 (37)

where (α + 1)/2 ∈ (0, 1) due to α < 1. By [1, Th. 4.2], the
tracking errors p̄f and v̄f of system (20) converge to zero in
the finite time T ≤ V(t0)(1−α)/2/(c(1 − α)/2). The proof is
thus completed.

Remark 6: The design of the controller (19) is motivated
by [6] and [12]. To implement the control law consisting
of (5) and (19), all the agents are supposed to know a com-
mon reference direction. Nevertheless, a common origin is
not required and a universal coordinate system is thus not
necessary. Then, the relative positions pi − pj can be directly
measured by their onboard campass/IMU, camera, and lidar.
The controller (19) only requires the local measurements and
the communication among neighboring agents and thus, can
be implemented in a distributed manner. Compared with the
containment control problem in [6], where followers converge
to a dynamic convex hull formulated by leaders, we require
the followers to form a bearing-defined shape-preserving for-
mation with respect to the leaders. Accordingly, we design
a dynamic control law consisting of matrix-weighted estima-
tor (5) and controller (19) to achieve the bearing-defined target
formation. It is the matrix-weighted terms that increase the dif-
ficulties in the establishment of the finite-time-stability. More
complicated operations of 1-norm and ∞-norm of vectors and
matrices have to be handled.
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Fig. 1. Trajectories of leaders and followers.

Remark 7: The error system (20) is obtained based on the
estimation result v̂i = v∗

i for t ≥ T0 by Proposition 1.
Proposition 2 shows that the states pf (t) and vf (t) do not
diverge for all t ∈ [t0, t0 + T0], which guarantees that the
initial states of error system (20), that is, p̄i(t0 + T0) and
v̄i(t0+T0), i ∈ Vf , are bounded. In [6, Proposition 2], the posi-
tions and velocities of followers are bounded for t ≥ t0 under
the assumption that all of leaders’ positions, velocities, and
accelerations are bounded for t ≥ t0. However, this assump-
tion is limited as Remark 1 states. In fact, we have shown that
Assumption 2 is sufficient to establish Theorem 1. Finally, it is
noted that the final settling time Tf of the closed-loop system
driven by the control laws consisting of (5) and (19) satis-
fies Tf ≤ t0 + T0 + T , which can be regulated by tuning the
constants k1, k2, and α.

Remark 8: For the network topology of the multiagent
systems, the subgraph among all followers Gf is assumed to
be undirected since it is necessary to guarantee the positive
definiteness of Bff . The positive-definite matrix Bff is used to
construct Lyapunov functions (10) and (21) in the proofs of
Proposition 1 and Theorem 1. While if Gf became a directed
graph or even a strongly connected graph, Bff would not neces-
sarily be symmetric, letting alone ensure it is positive definite.
The bearing-based formation control problem of multiagent
systems under a directed network will be further studied in
our future work.

IV. ILLUSTRATIVE EXAMPLE

In this section, we present a simulation example to
illustrate the effectiveness of the control law consisting
of (5) and (19) for the followers (1). The multiagent
systems consist of the followers 1–6, the leaders 7 and
8, and the 2-rooted graph G. The target formation is a
cube, defined by the bearing constraints g∗

3,2 = g∗
4,1 =

−g∗
7,6 = g∗

8,5 = [0, 1, 0]T , g∗
4,3 = g∗

5,6 = −g∗
7,8 =

[1, 0, 0]T , g∗
3,7 = g∗

4,8 = −g∗
5,1 = −g∗

6,2 = [0, 0,−1]T ,

and g∗
8,2 = (1/

√
3)[1, 1, 1]T . The leaders’ initial posi-

tions are p1(t0) = [4, 0, 4]T and p2(t0) = [4, 4, 4]T .
All the agents are stationary at the initial time. To avoid
the obstacle, the leaders are associated with the follow-
ing accelerations so as to steer the multiagent formation
maneuver:

0 < t ≤ 10 : v̇1 = [
0.03 sin(t/4), 0, 0

]T

v̇2 = [
0.03 sin(t/4), 0, 0

]T

Fig. 2. Velocity of each follower vi.

Fig. 3. Bearing error
∑

(i,j)∈E ‖gij − g∗
ij‖.

10 < t ≤ 40 : v̇1 = [0, 0, 0]T , v̇2 = [0, 0, 0]T

40 < t ≤ 60 : v̇1 = [0, 0.02 sin((t − 40)/3),

−0.02 sin((t − 40)/3)]T

v̇2 = [0,−0.02 sin((t − 40)/3),

−0.02 sin((t − 40)/3)]T

60 < t ≤ 90 : v̇1 = [0, 0, 0]T , v̇2 = [0, 0, 0]T

90 < t ≤ 110 :

v̇1 = [0,−0.02 sin((t − 40)/3), 0.02 sin((t − 40)/3)]T

v̇2 = [0, 0.02 sin((t − 40)/3), 0.02 sin((t − 40)/3)]T

t > 110 : v̇1 = [0, 0, 0]T , v̇2 = [0, 0, 0]T .

The initial positions of the followers are set randomly. Set
μ = 1.2, ν1 = 10, ν2 = 2, k1 = 10, k2 = 5, and α = 9/11.
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Fig. 1 illustrates that the multiagent systems converge to the
desired cube formation, which is able to achieve the transla-
tional and scaling formation maneuver. At t = 40s and 90s,
the formation achieved the scaling maneuver and avoid the
obstacle successfully.

The change of the velocity of each agent is presented in
Fig. 2. As is shown in Fig. 3, the bearing error converges
to zero in finite time t = 3s, and remains zero during the
translational and scaling formation maneuver.

V. CONCLUSION

In this article, a distributed estimator-based control approach
has been proposed for the multiagent systems consisting of
multiple leaders, followers with double-integrator dynamics,
and the underlying multiple rooted graph including an undi-
rected subgraph, to achieve a bearing-defined target formation
in finite time. Different from the convex hull, the bearing-
defined formation not only has the desired geometric structure
but also is capable of formation maneuverability. Simulation
results are also presented to illustrate the effectiveness of our
control approach.

There are some directions for future work. First, we hope
to investigate the bearing-based formation control problem
over more complicated network topology, such as a switch-
ing graph or a directed graph. Second, some practical issues,
including the conditions for collision avoidance and connec-
tivity preservation, will be considered. Last but not least,
it is of much practicability to employ the event-triggered
mechanism to achieve bearing-based formation control against
cyberattacks [30], [31] in the future.

APPENDIX A
LEMMAS

Lemma 1 [32, Lemma 2.3]: For any real numbers, xi, i =
1, . . . , n and 0 < b ≤ 1, the following inequality holds,
(
∑n

i=1 |xi|)b ≤ ∑n
i=1 |xi|b. If b = b1/b2 ≤ 1, where b1 > 0

and b2 > 0 are odd integers, then it holds that |xb − yb| ≤
21−b|x − y|b.

Lemma 2 [32, Lemma 2.4]: Let c and d be positive
real numbers and γ (x, y) > 0 be a real-valued function.
Then, it holds that |x|c|y|d ≤ (cγ (x, y)|x|c+d/(c + d) +
(dγ −c/d(x, y)|y|c+d)/(c + d).

APPENDIX B
PROOF OF PROPOSITION 2

Substituting (19) into (1) yields the closed-loop system as

ṗi = vi

v̇i = ˙̂vi − k2

⎛

⎝
(
vi − v̂i

)1/α + k1/α

1

∑

j∈Ni

Pg∗
ij

(
pi − pj

)
⎞

⎠

2α−1

.

(38)

Consider the Lyapunov function candidate
W = (1/2)pT

f pf + (1/2)vT
f vf . Taking the time derivative

of W along the trajectory of system (38) yields

Ẇ = pT
f vf + vT

f uf ≤ W +
nf∑

i=1

‖vi‖‖ui‖ (39)

where uf = [uT
1 , . . . , uT

nf
]. It follows from Lemma 1 that:

∥
∥
∥yb

∥
∥
∥ =

(
d∑

m=1

(
yb

m

)2
)1/2

≤
d∑

m=1

|ym|b

≤ d

(
d∑

m=1

y2
m

)b/2

= d‖y‖b.

It follows that: ‖ui‖ ≤ ‖˙̂vi‖ + d2αk2(‖vi‖2−1/α + ‖v̂i‖2−1/α) +
dk2−1/α

1 k2‖∑j∈Ni
Pg∗

ij
(pi − pj)‖2α−1. Note that

∥
∥
∥
∥
∥
∥

∑

j∈Ni

Pg∗
ij
(pi − pj)

∥
∥
∥
∥
∥
∥

≤
n∑

i=1

(
‖Id‖ + ‖g∗

ij‖2
)(‖pi‖ + ∥

∥pj
∥
∥
)

≤ 2n‖pi‖ + 2
n∑

j=1

∥
∥pj
∥
∥.

Then, we have

‖ui‖ ≤
∥
∥
∥ ˙̂vi

∥
∥
∥+ d2αk2

(
‖vi‖2−1/α + ∥

∥v̂i
∥
∥2−1/α

)

+ 22α−1dk2−1/α

1 k2

⎛

⎝n‖pi‖ +
n∑

j=1

∥
∥pj
∥
∥

⎞

⎠

2α−1

.

Under Assumption 2, ‖v̇j(t)‖ is bounded for all t ≥ t0 and
j ∈ Vl. Accordingly, for t ∈ [t0, t0 + T0], if Assumption 2 is
satisfied, ‖vj(t)‖ and ‖pj(t)‖ are also bounded for all t ≥ t0
and j ∈ Vl. Moreover, for any initial estimates v̂i(t0), which
are well defined, the trajectories of v̂i(t) are bounded, since the
estimator (5) makes v̂i(t) finite-time convergent. As a result,
by the computation of the estimator (5), the trajectories of˙̂vi(t) are also bounded given the bounded trajectories of v̂i(t).
Therefore, there exists a constant ϑ1 such that

ϑ1 ≥
∥
∥
∥ ˙̂vi

∥
∥
∥+ d2αk2

∥
∥v̂i
∥
∥2−1/α

+ 22α−1dk2−1/α

1 k2

n∑

j=nf +1

∥
∥pj
∥
∥2α−1

and it follows that:

‖ui‖ ≤ ϑ1 + d2αk2‖vi‖2−1/α + 22α−1dk2−1/α

1 k2

×
⎛

⎝n2α−1‖pi‖2α−1 +
nf∑

j=1

∥
∥pj
∥
∥2α−1

⎞

⎠. (40)

Substituting (40) into (39) yields

Ẇ ≤ W + ϑ1

nf∑

i=1

‖vi‖ + d2αk2

nf∑

i=1

‖vi‖3−1/α

+ (2n)2α−1dk2−1/α

1 k2

nf∑

i=1

‖vi‖‖pi‖2α−1

+ 22α−1dk2−1/α

1 k2

nf∑

i=1

nf∑

j=1

‖vi‖
∥
∥pj
∥
∥2α−1

≤ W + ϑ1

nf∑

i=1

‖vi‖ + d2αk2

nf∑

i=1

‖vi‖3−1/α
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+ 22α−1dk2−1/α

1 k2
(
n2α−1 + nf

)

2α

nf∑

i=1

‖pi‖2α

+ 22α−1dk2−1/α

1 k2
(
n2α−1 + nf

)

2α

nf∑

i=1

‖vi‖2α

where the last inequality holds by Lemma 2. By
max(‖pi‖b, ‖vi‖b) ≤ (‖pi‖2 + ‖vi‖2)b/2 for all b ≥ 0, we
have

Ẇ ≤ W + ϑ1

nf∑

i=1

(
‖pi‖2 + ‖vi‖2

)1/2

+ d2αk2

nf∑

i=1

(
‖pi‖2 + ‖vi‖2

)(3−1/α)/2

+ 22α−1dk2−1/α

1 k2
(
n2α−1 + nf

)

2α

nf∑

i=1

(
‖pi‖2 + ‖vi‖2

)α

.

By Lemma 1, we have
∑nf

i=1(‖pi‖2+‖vi‖2)1/2 ≤ ∑nf
i=1(‖pi‖+

‖vi‖). Moreover, based on the equivalence between any two
different kinds of norms in R

d, there exists a constant ϑ2 > 0
such that

nf∑

i=1

(‖pi‖ + ‖vi‖) ≤ ϑ2

( nf∑

i=1

(
‖pi‖2 + ‖vi‖2

)
)1/2

.

It follows that
∑nf

i=1(‖pi‖2 + ‖vi‖2)1/2 ≤ ϑ2W1/2. Similarly,
there exist positive constants ϑ3 > 0 and ϑ4 > 0 such
that

∑nf
i=1(‖pi‖2 + ‖vi‖2)(3−1/α)/2 ≤ ϑ3W(3−1/α)/2 and

∑nf
i=1(‖pi‖2 + ‖vi‖2)α ≤ ϑ4Wα . Thus, we obtain

Ẇ ≤ W + ϑ1ϑ2W1/2 + d2αk2ϑ3W(3−1/α)/2

+ 22α−1dk2−1/α

1 k2
(
n2α−1 + nf

)
ϑ4

2α
Wα.

It follows from Lemma 2 that Wb ≤ bW + 1 − b, 0 < b ≤ 1.
Then, we have

Ẇ ≤ ϑ5W + ϑ6 (41)

where ϑ5 = 1 + (ϑ1ϑ2)/2 + d2αk2ϑ3(3α − 1)/2α +
22α−1dk2−1/α

1 k2(n2α−1 + nf )ϑ4(1 − α)/(2α) and ϑ6 =
(ϑ1ϑ2)/2 + d2αk2ϑ3(1 − α)/2α + 22α−1dk2−1/α

1 k2(n2α−1 +
nf )ϑ4(1 − α)/α. By direct integration on (41), W is bounded
for t ∈ [t0, t0 +T0]. Therefore, pf (t) and vf (t) are bounded for
t ∈ [t0, t0 + T0]. The proof is thus completed.
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