
Original Article

The International Journal of
Robotics Research
2025, Vol. 0(0) 1–27
© The Author(s) 2025
Article reuse guidelines:
sagepub.com/journals-permissions
DOI: 10.1177/02783649251315758
journals.sagepub.com/home/ijr

No-regret path planning for temporal logic tasks
in partially-known environments

Jianing Zhao1, Keyi Zhu2, Mingyang Feng1, Shaoyuan Li1 and
Xiang Yin1

Abstract
In this paper, we investigate the graph-based robot path planning problem for high-level specifications described by co-safe
linear temporal logic (scLTL) formulae. Our focus is on scenarios where the map geometry of the workspace is only
partially-known. Specifically, we assume the existence of unknown regions, where the robot lacks prior knowledge of their
successor regions unless it physically reaches these areas. In contrast to the standard non-deterministic synthesis approach
that optimizes the worst-case cost, in the paper, we propose using regret as the metric for planning in such partially-known
environments. Regret measures the difference between the actual cost incurred and the best-response cost the robot could
have achieved if it were aware of the actual environment from the start. We present a formal model for this problem setting
and develop an efficient algorithm to find an optimal strategy in the sense that it meets the scLTL specification while
minimizing the regret of the strategy. Our approach provides a quantitative method for evaluating the trade-off between
exploration and non-exploration, rather than relying on the heuristic determinations used in many existing works. Case
studies on firefighting and collaborative robots are provided to illustrate the effectiveness of our framework. Furthermore,
we conduct numerical experiments on a large number of randomly generated systems and compare the performance of the
regret-based strategy with other path planning strategies. The experimental results indicate that regret is a highly
meaningful metric for path planning in partially-unknown environments, especially in cases where no probabilistic a priori
knowledge is available.

Keywords
Path planning; formal methods, linear temporal logic; regret minimization

Received 10 June 2024; Revised 16 October 2024; Accepted 17 December 2024

1. Introduction

1.1. Backgrounds and motivations

Path planning and decision-making are central problems in
autonomous robotics. In this context, one needs to design
finite or infinite paths for robots based on system dynamics
and the underlying environment, ensuring they meet spe-
cific requirements such as reaching target states while
avoiding obstacles (LaValle, 2006). With the increasing
demand for complex functionalities in autonomous robots,
there is a growing need for path planning under complex
logic tasks evolving spatial and temporal constraints. For
instance, in search and rescue scenarios, robots may need to
persistently surveil specific regions of interest according to
some predefined rules (Fiaz and Baras, 2020). Similarly, in
intelligent warehouse systems, robots must efficiently pick
up and deliver items between various locations in a specific
logic order (Scher and Kress-Gazit, 2020). Therefore, robot
path planning for high-level specifications using formal

methods has been drawing increasingly more attentions in
the past years; see, for example, Lin (2014), Kress-Gazit
et al. (2018), Luckcuck et al. (2019), Belta and Sadraddini
(2019), Mahulea et al. (2020), and Yin et al. (2024).

Among many formal languages, Linear Temporal Logic
(LTL) stands out as one of the most popular specifications in
describing and synthesizing high-level tasks for robotic
applications. Specifically, by introducing temporal opera-
tors such as “always” or “eventually,” LTL formulae can
express complex formal requirements such as “first

1Department of Automation, Shanghai Jiao Tong University, Shanghai,
China
2Department of Mechanical Engineering, Michigan State University, East
Lansing, MI, USA

Corresponding author:
Xiang Yin, Department of Automation, Shanghai Jiao Tong University,
800 Dongchuan RD. Minhang District, Shanghai 200240, China.
Email: yinxiang@sjtu.edu.cn

https://uk.sagepub.com/en-gb/journals-permissions
https://doi.org/10.1177/02783649251315758
https://journals.sagepub.com/home/ijr
https://orcid.org/0000-0002-1579-0522
https://orcid.org/0000-0003-1944-1570
mailto:yinxiang@sjtu.edu.cn
http://crossmark.crossref.org/dialog/?doi=10.1177%2F02783649251315758&domain=pdf&date_stamp=2025-04-24

reaching a desired region and then repeatedly visiting a
target region.” In the context of robot path planning for LTL
tasks, the mobility of the robot is often abstracted as a
labeled transition system that considers the connectivity
between regions and the dynamics of the robot. Following
the automata-theoretical approach for LTL model checking
(Vardi and Wolper, 1986; Baier and Katoen, 2008), path
planning problems can be then transformed into graph-
search problems over the product space of the transition
model and the automaton representation of the LTL for-
mula. For instance, for co-safe LTL (scLTL) tasks, a
fragment of general LTL tasks achievable within finite
horizons, the LTL planning problem simplifies to a short
path search problem leading to accepting states (Kloetzer
and Mahulea, 2016; Cho et al., 2017; Liu et al., 2024). For
general fragments of LTL tasks evaluated over infinite
paths, Smith et al. (2011), Kloetzer and Mahulea (2020),
Luo et al. (2021), Luo and Zavlanos (2022), and Hustiu et al.
(2024) studied the generation of optimal plans using the
“prefix–suffix” structure.

When uncertainties exist in the environment, such as
uncontrollable components or unknown obstacles, simply
finding an open-loop plan is insufficient. Instead, one may
seek to synthesize feedback strategies that can react to the
dynamic environment. Mathematically, uncertainties in the
environment can be abstracted as non-deterministic transi-
tions in the system model. In this context, path planning for
LTL tasks can be generally categorized into two categories:

· When one has prior knowledge regarding the probability
distributions of non-deterministic environments, the
synthesis problem can be formulated within the
framework of Markov decision processes (MDPs) so
that probabilistic performance in the expected sense can
be optimized; see, for example, Fu and Topcu (2014),
Ding et al. (2014), Guo and Zavlanos (2018), Lacerda
et al. (2019), and Cai et al. (2021b).

· When no probabilistic information regarding uncer-
tainties is available, the behaviors of the environment are
usually treated to be purely non-deterministic, and a
typical approach is to solve a robust synthesis problem
ensuring worst-case performance metrics such as total
cost for finite tasks and long-run average cost for infinite
tasks; see, for example, Wolff et al. (2012, 2013), Bloem
et al. (2014), and Fu and Topcu (2016).

While stochastic models such as MDPs offer a suitable
framework for quantifying uncertainty, such probabilistic
information is not always available in many applications,
especially when exploring an unknown workspace for the
first time. Hence, one has to handle the non-stochastic
control settings. However, relying solely on worst-case
analysis may also lead to a highly conservative strategy.

To illustrate the conservativity of worst-case synthesis,
let us first consider a simple motivating example as follows.
Suppose that a robot moves in a partially-known workspace
shown in Figure 1. Initially, the robot is aware of the

presence of certain walls (denoted by solid lines) as well as a
door (represented by the dashed line between regions 2 and
5). However, it is unknown a priori whether the door is locked
or not. The robot will only ascertain the status of the door
upon reaching region 2. The objective of the robot is to reach
target region 5 with shortest distance. If one takes a worst-
case strategy, then the robot will follow the red trajectory.
This is because the short-cut from regions 2 to 5may not exist
when the door is locked; if it goes to region 2, then in the
worst-case, it will spend additional effort to go back.
However, by taking the red trajectory, the robot may heavily
regret by thinking that it should have taken the short-cut at
region 2 if it knows with hindsight that the door is open.
However, a more natural and human-like plan is to first go to
region 2 to take a look at whether the door is locked. If not,
then it can take the short-cut, which saves 7 units cost.
Otherwise, the robot needs to go back to the red trajectory.
Compared with the red path, although this approach may
have two more units cost than the worst-case, it takes the
potential huge advantage of exploring the unknown regions.

The simple example above suggests that even in a non-
stochastic setting, worst-case performance may not always
be a suitable metric for quantifying a planning strategy.
Particularly, for partially-known environments that require
explorations, worst-case analysis overlooks the trade-off
between the cost incurred from exploration and the potential
benefits gained through exploration. On the other hand,
exploration is not always necessary if it does not provide
more benefit. For example, in Figure 1, if the distance
between region 2 and the unknown wall is farther, say 3
units of cost, then the robot may choose not to explore the
unknown region. This is because, if it explores and finds no
shortcut due to the presence of the wall, then it will regret
not choosing the worst-case plan without exploration.
Therefore, a systematic approach is needed to effectively
and quantitatively balance the trade-off between “to ex-
plore” or “not to explore.”

1.2. Our results and contributions

In this paper, we address a new type of optimal path
planning problem for robots operating in a partially-known

Figure 1. A motivating example, where a robot needs to reach
region 5 from region 0 with partially-known environment
information.

2 The International Journal of Robotics Research 0(0)

environment under scLTL specifications. Specifically, we
assume that while the location of each region in the
workspace is perfectly known, the robot does not have
prior knowledge of the connectivities for some of these
regions unless it physically explores them. This situation
arises in many scenarios where the robot only maintains a
basic map of the workspace and needs to explore certain
areas online to gather detailed information. It is important
to note that the terminologies “partially-known” envi-
ronments and “non-deterministic” environments are dis-
tinct. The latter refers to scenarios where the environment’s
outcome is entirely random, meaning it might behave
differently even with identical visits. However, a partially-
known environments is referred to the case where the robot
has information uncertainty regarding the true world
initially, but the underlying actual environment is still fixed
and deterministic.

Mathematically speaking, the path planning problem in
such a partially-known environment can be viewed as a
specialized type of reactive synthesis problem, where the
environment adopts a location-based strategy pre-
determined at the initial instant. That is, the environment
player must fix its decision for each vertex at the initial stage
of the game, as the underlying environment is unknown but
static. However, our approach goes beyond the standard
worst-case analysis framework typically used for qualitative
synthesis problems in such scenarios. Specifically, to
evaluate the performance of planning strategies in partially-
known environments, we propose using the generic notion
of regret borrowed from the game theory literature
(Blackwell, 1956), as the optimality metric. The regret of a
plan under a fixed but unknown environment is defined as
the difference between its actual cost and the best-response
cost it could have achieved with hindsight once the actual
environment is known. Our overall objective is to syn-
thesize a planning strategy that minimizes regret for all
potential but unknown actual environments while satisfying
the scLTL specification.

The main contribution of this paper is the application of
the generic regret metric to the planning problem in
partially-known environments. This application is non-
trivial as it requires formal modeling of the exploration
process, the development of an efficient synthesis algo-
rithm, and experimental evaluation to demonstrate the
applicability of the metric. More specifically, the main re-
sults and contributions of this paper are summarized as
follows:

· First, we establish a formal framework for modeling the
path planning problem in partially-known environments.
Specifically, we propose the structure of partially-known
weighted transition systems (PK-WTS) as the “possible
world” model that encompasses the set of all potential
actual environments. Building on the PK-WTS, we
formally describe the evolution of knowledge during the
exploration process and introduce regret as the metric for
evaluating the planning problem.

· We then present an efficient algorithm for synthesizing
regret-optimal planning strategy under scLTL specifi-
cations. Our algorithm consists of two stages. First, by
integrating exploration knowledge into the system
model, we introduce a novel game arena termed the
knowledge-based game arena. We demonstrate that
solving the regret-optimal planning problem is equiva-
lent to addressing a quantitative two-player game, where
the environment adopts a specific strategy called the
strongly positional strategy. Then leveraging the struc-
tural properties of this game type, we develop an efficient
value iteration algorithm to solve the game. Our overall
approach exhibits exponential complexity in the number
of regions with unknown transitions, which is in general
much small compared with the total of states, but
maintains polynomial complexity in the size of the
transition system and the specification automaton.

· Finally, we implement our algorithm in two real-world
case studies, which demonstrate the effectiveness of our
approach. Furthermore, we conduct numerical experi-
ments on a large number of randomly generated systems,
comparing the actual cost performance among the
proposed regret-based strategy with the standard best-
case and worst-case strategies. Our statistical results
demonstrate that regret is a highly meaningful metric for
path planning in partially-unknown environments, par-
ticularly when there is no probabilistic a priori knowl-
edge available.

1.3. Related works

We discuss related works in the literature from the following
four perspectives.

1.3.1. LTL Planning in known environments. Optimal path
planning for single or multiple robots under LTL constraints
has been extensively studied in the past decades. For in-
stance, Smith et al. (2011) and Ulusoy et al. (2013) in-
vestigated synthesizing optimal plans in the prefix–suffix
structure to minimize per-cycle costs while achieving both
LTL formulae and surveillance tasks. However, the major
challenge in LTL planning for multi-robot systems is the
curse of dimensionality as the number of robots increases.
To address this issue, efficient and asymptotically optimal
approaches such as sampling-based methods using rapid
random trees (RRT) have been developed (Kantaros and
Zavlanos, 2018, 2020; Vasile et al., 2020). Petri-nets-based
LTL planning techniques have also been developed to le-
verage the structural properties in concurrent systems
(Lacerda and Lima, 2019; Kloetzer and Mahulea, 2020; Lv
et al., 2023). Furthermore, distributed approaches have been
widely adopted to synthesize local plans for each robot to
mitigate the complexity challenge (Kloetzer and Belta,
2009; Luo and Zavlanos, 2022; Yu and Dimarogonas,
2022). Researchers have also investigated path planning
problems for variants of LTL tasks, such as counting
temporal logics (Sahin et al., 2020), LTLf (Brafman et al.,

Zhao et al. 3

2019), and HyperLTL (Wang et al., 2020). In addition to the
LTL specification, many recent works have also adopted the
signal temporal logic (STL) specification to incorporate
real-valued and real-time requirements; see, for example,
Gundana and Kress-Gazit (2021), Yu et al. (2023), Leung
et al. (2023), Cardona and Vasile (2024), and Yu et al.
(2024). Nonetheless, these works all assume that the en-
vironment is known, meaning that the map geometry and
semantic structure are available during the planning stage.

1.3.2. Planning in unknown environments. There are ex-
isting works that address planning problems in the literature
when the environment is unknown or partially-known. For
example, in Fridovich-Keil et al. (2019), the authors tackled
the motion planning problem in an a priori unknown en-
vironment, ensuring both safety and liveness. The challenge
of high-speed navigation of quadrotors in unknown envi-
ronments was studied in Zhou et al. (2021), where trajectory
replanning techniques were used. In Ho et al. (2024), a
sampling-based approach was developed to synthesize
strategies for nondeterministic hybrid systems with un-
known environmental components. However, these works
focus on continuous motion planning settings and do not
consider a quantitative performance metric like regret.
Recently, there have been related works addressing the
challenge of LTL planning in unknown or partially-known
environments, where some information such as workspace
connectivities, transition probabilities, and region semantics
is not precisely known beforehand. For example, in Guo and
Dimarogonas (2015), the authors presented a replanning-
based algorithm that updates the system model and exe-
cution plan when changes in the environment are detected.
Similarly, an efficient iterative planning algorithm was
proposed in Lahijanian et al. (2016) that not only adjusts the
plan on-the-fly in the presence of unforeseen obstacles but
also modifies the specification itself when the originally
defined task cannot be fully achieved. In Ayala et al. (2013),
it was assumed that both the environment map and the
planning strategy are incrementally constructed based on
information acquired by sensors. In the framework of
MDPs, learning-based approaches have also been utilized to
tackle the challenge of LTL planning in stochastic envi-
ronments with unknown transition probabilities; see, for
example, Hasanbeig et al. (2019), Bozkurt et al. (2020), and
Cai et al. (2021a, 2023). More recently, Kantaros et al.
(2022) investigated the scLTL planning problem under
environments with known map geometries but with se-
mantic uncertainties. Specifically, it addressed the issue of
perceptual uncertainty by developing a novel sampling-
based algorithm to iteratively generate plans online.
However, all these approaches are either based on stochastic
control settings or rely on best/worst-case optimality met-
rics. Still, the metric of regret is not investigated in these
works.

1.3.3. Planning in non-deterministic domains. In the lit-
erature on artificial intelligence, there is extensive research

on planning in non-deterministic domains. A fundamental
problem in this area is the fully observable non-
deterministic (FOND) planning problem, where the state
is perfectly observable, but the outcomes of actions are non-
deterministic and cannot be predicted during planning; see,
for example, Bertoli et al. (2006) and Muise et al. (2014).
The FOND problem has also been extended to partially
observable non-deterministic (POND) planning, where the
state is not directly observable and is inferred through an
observation relation (Cimatti et al., 2003; Geffner and
Geffner, 2018). Our partially-known planning problem
falls under the broader class of FOND problems, as we
assume the current state is perfectly observable, while the
non-determinism comes from unknown successor patterns.
However, compared to the standard FOND problem, the key
difference in our work is that we introduce an optimality
condition based on the regret metric. Moreover, although a
partially-known environment represents a form of non-
determinism, it has specific structural properties that al-
low us to design an efficient algorithm.

1.3.4. Regret-optimal graph games. Mathematically, the
regret-optimal planning problem addressed in this paper
falls within the category of two-player graph games with
quantitative objectives (Chatterjee et al., 2014;
Kwiatkowska et al., 2022). Specifically, it can be viewed as
an instance of regret minimization games where the envi-
ronment employs a particular type of positional strategies.
Regret minimization is an emerging topic in the context of
graph games; see, for example, Filiot et al. (2010), Hunter
et al. (2017), and Cadilhac et al. (2019). Particularly, the
setting in Filiot et al. (2010) is closely related to our problem
setting: it addresses a reachability game with minimal regret
using the graph-unfolding technique. Note that scLTL
specification is essentially a reachability requirement over
the product space between the system model and the
specification automaton. However, Filiot et al. (2010)
consider a setting where the strategy of the environment-
player is unrestricted in the sense that it allows to change its
decision freely each time it visits the same state. This un-
restricted setting does not align with the partially-known
environment scenario, where the underlying environment is
fixed, and the player must make consistent decisions when
visiting the same state multiple times. In principle, this gap
in strategy spaces can be addressed by constructing the
knowledge-based game arena, as we proposed in the paper.
However, the algorithm in Filiot et al. (2010) relies on a
graph-unfolding technique, which incurs pseudo-
polynomial complexity to solve the regret minimization
problem in the constructed game. Our approach, on the
other hand, leverages the key structural property of
knowledge accumulation in path planning, reducing the
complexity of regret minimization from pseudo-polynomial
to polynomial using a value iteration algorithm. In the
context of robotic applications, the recent work (Muvvala
et al., 2022) used regret to optimize human–robot collab-
oration strategies. However, the purposes of using regret in

4 The International Journal of Robotics Research 0(0)

our work and in Muvvala et al. (2022) are distinct. Here, we
utilize regret to address the exploration issue in partially-
known environments, whereas Muvvala et al. (2022) focus
on human–robot collaboration. Additionally, while
Muvvala et al. (2022) directly adopted the synthesis al-
gorithm from Filiot et al. (2010), our work presents a more
efficient algorithm customized to the structural properties of
our problem setting.

1.3.5. Non-stochastic optimal control. Finally, it is worth
noting that the metric of regret has found widespread
adoption in the fields of online learning and online op-
timization (Hazan, 2016; Shalev-Shwartz et al., 2012) as
a measure of solution efficiency. Particularly, in the
context of non-stochastic optimal control for dynamical
systems, regret has proven to be a meaningful metric
compared to standard H2 or H∞ control settings (Hazan
et al., 2020; Zhou et al., 2023; Yan et al., 2023; Goel and
Hassibi, 2023). For example, experimental results in Goel
and Hassibi (2023) demonstrate that regret-optimal
controllers perform better across various unknown dis-
turbances compared to other robust controllers. However,
due to the fundamental differences between controlling
continuous dynamical systems and synthesizing reactive
systems over discrete state-spaces, these results are not
directly applicable to our problem with high-level
specifications over symbolic state-spaces. In fact, our
results can be seen as an extension of the general findings
in continuous-time systems, showing that regret is also a
suitable metric for reactive synthesis for symbolic sys-
tems in the presence of unknown uncertainties.

1.4. Organizations

The remaining part of this paper is organized as follows.
In Section 2, we review some necessary preliminaries and
the standard LTL planning in fully-known environments.
In Section 3, we present a formal model for partially-
known environments and introduce regret as the per-
formance metric. In Section 4, we transfer the regret-
minimizing planning problem as a quantitative two-
player game on a new structure named knowledge-
based game arena. In Section 5, we propose an efficient
algorithm to solve the regret-minimizing synthesis
problem. Case studies on firefighting robots and col-
laborative robots are provided in Section 6 to show the
effectiveness of our algorithm. Numerical experiments
are also provided to compare the performance of the
regret-based strategy with the other strategies. Finally, we
conclude the paper in Section 7.

Some preliminary and partial results in this paper were
presented in the conference version (Zhao et al., 2023).
Specifically, the knowledge-based game arena was in-
troduced in Zhao et al. (2023), but the solution to the
regret minimization problem is based on a slight modi-
fication of the algorithm in Filiot et al. (2010) over the
constructed game graph. Therefore, the complexity of the

overall algorithm is pseudo-polynomial in the size of the
game graph. However, compared with Zhao et al. (2023),
this journal version has several key differences. First, we
propose a more efficient algorithm that leverages the
structural properties of the problem, in contrast to Zhao
et al. (2023), which uses a standard regret-minimization
algorithm that is more complex. Furthermore, our work
includes detailed hardware experiments as well as thor-
ough numerical analyses, providing strong support for
using regret as the metric in our context.

2. Preliminaries

In this section, we briefly review some necessary prelimi-
naries and the standard approach for solving the LTL
planning problem in a fully-known environment. Let A be a
set of symbols. We denoted by Aω (respectively, A*) the sets
of all infinite (respectively, finite) sequences of symbols
over A; we denote by 2A the power-set of A. We use notation
“{}” to denote an unordered set, and use notation “hi” to
denote an ordered set. Notation R

þ denotes the set of all
positive real numbers.

2.1. Weighted transition systems

In the context of path planning for high-level specifications,
the workspace of the agent is usually abstracted as a discrete
transition system with weights (Smith et al., 2011; Belta
et al., 2017). Specifically, when the environment of the
workspace is fully-known, the mobility of the agent (or map
geometry) is usually modeled as a weighted transition
system (WTS) defined as follows.

Definition 1. (Weighted Transition Systems) A
weighted transition system (WTS) is a 6-tuple

T ¼ ðX , x0, δT ,w,AP,LÞ,

where X is a set of states representing different regions of
the workspace; x0 2X is the initial state representing the
starting region of the agent; δT :X → 2X is the transition
function such that, starting from each state x2X , the
agent can move directly to any of its successor state
x0 2 δT ðxÞ. We also refer δT ðxÞ to as the successor states of
x. Function w : X ×X→R

þ is a cost function such that
wðx, x0Þ represents the cost incurred when the agent moves
from x to x0; AP is the set of atomic propositions rep-
resenting basic properties of our interest; and L :X → 2AP

is a labeling function assigning each state a set of atomic
propositions.

Given a WTS T , an infinite path of T is an infinite
sequence of states ρ ¼ x0x1x2/2X ω such that
xiþ1 2 δT ðxiÞ, i ≥ 0. A finite path is defined analogously. We
denote by PathωðTÞ and Path*ðTÞ the sets of all infinite
paths and finite paths in T , respectively. Given a finite path
ρ ¼ x0x1/xn 2 Path*ðTÞ, its cost is defined as the sum of
all transition weights in it, that is,

Zhao et al. 5

costðρÞ ¼
Xn�1

i¼0

wðxi, xiþ1Þ:

The trace of an infinite or finite path ρ ¼ x0x1x2ð/Þ is an
infinite or finite sequence over 2AP denoted by LðρÞ ¼
Lðx0ÞLðx1Þð/Þ. Analogously, we denote by TraceωðTÞ and
Trace*ðTÞ the sets of all infinite traces and finite traces in T ,
respectively.

2.2. Linear temporal logic specifications

The syntax of general LTL formula is given as follows

f ¼ u j a j ¬f j f1
⋀ f2 j Bf j f1Uf2,

where u stands for the “true” predicate; a2AP is an
atomic proposition; ¬ and ⋀ are Boolean operators “ne-
gation” and “conjunction,” respectively; s and U denote
temporal operators “next” and “until,” respectively. One
can also derive other temporal operators such as “even-
tually” by ◊f ¼ uUf and “always” by □f ¼ ¬◊¬f. LTL
formulae are evaluated over infinite words; the readers are
referred to Baier and Katoen (2008) for the detailed se-
mantics of LTL. Specifically, an infinite word τ 2 ð2APÞω is
an infinite sequence over alphabet 2AP . We write τ~f if τ
satisfies LTL formula f.

In this paper, we focus on a widely used fragment of LTL
formulae called the co-safe LTL (scLTL) formulae. Spe-
cifically, an scLTL formula requires that the negation op-
erator ¬ can only be applied in front of atomic propositions.
Consequently, one cannot use temporal “always” □ in
scLTL. Although the semantics of LTL are defined over
infinite words, it is well known that any infinite word
satisfying an scLTL formula has a finite good prefix. Spe-
cifically, a good prefix is a finite word τ0 ¼ τ1/τn 2 ð2APÞ*
such that τ0τ00~f for any τ00 2 ð2APÞω. We denote by

Lf
pref4ð2APÞ* the set of all finite good prefixes of scLTL

formula f.

For any scLTL formula f, its good prefixes Lf
pref can be

accepted by a deterministic finite automaton (DFA) (Belta
et al., 2017) defined as follows.

Definition 2. (Deterministic Finite Automata) A de-
terministic finite automaton is a 5-tuple A ¼
ðQ, q0,Σ, f ,QFÞ, whereQ is the set of states; q0 2Q is the
initial state; Σ is the alphabet; f :Q ×Σ→Q is a tran-
sition function; and QF4Q is the set of accepting states.
The transition function is extended to f :Q×Σ*→Q

recursively such that "q2Q, s2Σ*, σ 2Σ : f ðq, sσÞ ¼
f ðf ðq, sÞ, σÞ. A finite word τ 2Σ* is said to be accepted by
A if f ðq0, τÞ 2QF ; we denote byLðAÞ the set of all accepted
words. Then for any scLTL formula f defined overAP, it is
well known that we can always build a DFA over alphabet
Σ ¼ 2AP , denoted by Af ¼ ðQ, q0, 2AP , f ,QFÞ, such that

LðAfÞ ¼ Lf
pref .

2.3. Path planning for scLTL specifications

Given a WTS T and an scLTL formula f, the path planning
problem is to find a finite path (a.k.a. a plan) ρ2 Path*ðTÞ
such that LðρÞ 2Lf

pref and, at the same time, its cost costðρÞ
is minimized. This problem can be reduced as a graph-
search problem over the product system.

Definition 3. (Product Systems) Given WTS
T ¼ ðX , x0, δT ,w,AP,LÞ and DFA Af ¼ ðQ, q0, Σ, f ,
QFÞ, the product system is a new (unlabeled) WTS

P ¼ T ÄAf ¼ ðS, s0, δP,wP, SFÞ,

where S ¼ X ×Q is the set of states; s0 ¼ ðx0, q0Þ is the
initial state; δP : S→ 2S is the transition function defined by:
for any s ¼ ðx, qÞ 2 S, we have

δPðsÞ ¼ fðx0, q0Þ 2 Sj x0 2 δTðxÞ⋀ q0 ¼ f ðq,LðxÞÞg;

wP : S × S→R is the weight function defined by:

"s ¼ ðx, qÞ, s0 ¼ ðx0, q0Þ 2 S :wPðs, s0Þ ¼ wðx, x0Þ;

and SF ¼ X ×QF is the set of accepting states.
By construction, for any path ρ ¼ ðx0, q0Þ/ðxn, qnÞ in

the product system, ðxn, qnÞ 2 SF implies that (i) ρ ¼
x0/xn 2 Path*ðTÞ, and (ii) LðρÞ2Lf

pref . Therefore, to solve

the optimal scLTL planning problem, it suffices to find a
path with minimumweight from the initial state to accepting
states SF in the product system.

3. Planning in partially-known environments

The above reviewed graph-search-based LTL planning
method crucially depends on the information of knowing
the mobility of the agent, or the environment map T is
perfectly known. This method, however, is not suitable
for the case of partially-known environments. To be
specific, this work considers a partially-known envi-
ronment characterized by the following assumptions:

A1. The agent knows the existence of all regions in the
environment as well as their semantics (atomic prop-
ositions hold at each region);

A2. The successor regions of each region in the real world
are fixed, but the agent may not know, a priori, what are
the actual successor regions it can move to;

A3. Once the agent physically reaches a region, it will
know the actual successor regions of this region
precisely.

In this section, we will provide a formal model for such a
partially-known environment using the new structure of
partially-known weighted transition systems and use regret
as a new metric for evaluating the performance of the
agent’s plan in such an environment.

6 The International Journal of Robotics Research 0(0)

3.1. Modeling of partially-known environments

Definition 4. (Partially-Known WTS) A partially-
known weighted transition system (PK-WTS) is a 6-tuple

T ¼ ðX , x0,Δ,w,AP,LÞ,

where, similar to the WTS, X is the set of states with initial
state x0 2X , w :X ×X →R is the cost function and
L :X → 2AP is a labeling function that assigns each state a
set of atomic propositions. Different from the WTS,

Δ :X → 22
X

is called a successor-pattern function that assigns each state
x2X a family of successor states.

The intuition of the PK-WTS T is explained as follows.
Essentially, PK-WTS is used to describe the possible world
from the perspective of the agent. Specifically, under as-
sumptions A1 and A3, the agent has some prior information
regarding the successor states of each unknown region but
does not know which one is true before it actually visits the
region. Therefore, in PK-WTS T, for each state x2X , we
have

ΔðxÞ ¼ fo1,…, ojΔðxÞjg,

where each oi 2 2X is called a successor-pattern repre-
senting a possible set of actual successor states at state x.
Hereafter, we will also refer each oi 2ΔðxÞ to as an ob-
servation at state x since the agent “observes” its successor
states when exploring state x. Therefore, for each state x2 X,
we say x is a

· known state if |Δ(x)| = 1; and
· unknown state if |Δ(x)| > 1.

We partition the state space as X ¼ Xkno _[Xun, where Xkno is
the set of known states and Xun is the set of unknown states.
We assume that the initial state x0 is known since the agent
has already stayed at x0 so that it has the precise information
regarding the successor states of x0.

In reality, the agent must move in a specific environment
that is compatible with the possible world T, although itself
does not know this a priori.

Definition 5. (Compatible WTS) We say a WTS T ¼
ðX , x0, δT ,w,AP,LÞ is compatible with PK-WTS T,
denoted by T 2T, if for any x 2 X, we have δT(x) 2 Δ(x).

Clearly, if all states in T are known, then its compatible
WTS is unique.

Example 1. (Running Example)We use the motivating
example in Figure 1 as the simple running example to
illustrate all concepts. This partially-known environment
in this example can be modeled (by simplification) as the
PK-WTS shown in Figure 2. Here, the successor-pattern

function Δ is defined by: Δ(x0) = {{x1}}, Δ(x1) = {{x2,
x3}}, Δ(x2) = {{x1}, {x1, x5}}, and Δ(x3) = {{x4}}.
Therefore, x2 is the unique unknown state, while all other
states are known. Specification, {x1} 2 Δ(x2) and {x1, x2}
2 Δ(x2) represent, respectively, the two possible situa-
tions that the door is locked and the door is open at state
x2. Note that the status of the door is assumed to be
unchanged during the planning process. We assign the
labeling function L:X→2AP by: Lðx5Þ ¼ ftargetg and
LðxiÞ ¼ \ for each i ¼ 0, 1,…, 4. The task can be de-
scribe by scLTL formula f ¼ ◊target, whose corre-
sponding DFA is given in Figure 3.

Remark 1. In our problem formulation, we assumed that
only transition relations could be partially known, while
the semantics of each region, that is, the label of each
state, are perfectly known. This assumption can actually
be relaxed by refining the state space of the transition
system. Specifically, if it is known that a state has
multiple possible sets of atomic propositions, but the
actual set is unknown a priori until the robot explores the
state, one can introduce a set of “copy states” between the
original state and its successor states. Each copy state
corresponds to a different possible set of atomic prop-
ositions that may hold at the original state. In this way,
the uncertainty about atomic propositions at the original
state can be modeled by an unknown transition function
from the original state to the copy states. Furthermore, in
our problem formulation, we assumed prior knowledge
of possible successor patterns for an unknown state. If a
state is fully unknown in the sense that no such prior

Figure 2. PK-WTS T for the motivating example in Figure 1. For
simplicity and without loss of generality, we omit some
backward transitions, such as the transition from x1 back to x0.
Instead, we retain only the two-way transitions between x1 and x2
in the model since the agent needs to backtrack if there is no
direct transition from x2 to x5.

Figure 3. DFA Af for scLTL formula f ¼ ◊target.

Zhao et al. 7

knowledge is available, then we can account for all
possible successor patterns by considering Δ(x) = 2Ne(x),
where Ne(x) represents the set of states physically ad-
jacent to state x.

3.2. Knowledge by explorations

Based on Assumption A3, when the agent visits a known
state x 2 Xkno, it will not gain any useful information about
the environment since Δ(x) is already a singleton. However,
when the agent visits an unknown state x 2 Xun, it will gain
new information and successor-pattern at this state will
become known from then on. Therefore, we refer the visit to
an unknown state to as an exploration. To capture the result
of an exploration, we introduce the concept of knowledge
state.

Definition 6. (Knowledge States) Given PK-WTS T, a
knowledge state is a tuple κ = (x, o)2 X × 2X such that o2
Δ(x). For each knowledge state κ, we denote by x(κ) and
o(κ), respectively, its first and second components, that
is., κ = (x(κ), o(κ)). We denote by

Kw ¼
�
κ2X × 2X j oðκÞ 2ΔðxðκÞÞ

�
, (1)

the set of all possible knowledge states.
Intuitively, a knowledge state (x, o) 2 X × 2X represents

the information the agent obtains when exploring known
state x, that is, the agent knows that the successor states of x
are o. Therefore, as the agent moves in the partially-
unknown environment, it collects more information. This
accumulated information is then captured by the concept of
knowledge set.

Definition 7. (Knowledge Sets) Given PK-WTS T, a
knowledge set K ¼ hκ1,…, κjKji, where κi 2Kw, is an
ordered set of knowledge states such that

"κ, κ0 2K : xðκÞ ¼ xðκ0Þ0oðκÞ ¼ oðκ0Þ:

We denote by KW the set of all knowledge sets.
It is worth noting that a knowledge state is defined as an

ordered set to capture the information about which state is
explored first. With a slight abuse of notation, for each state
x 2 X, we write x2K if ðx, oÞ 2K for some observation o 2
Δ(x). Therefore, we further require that for each state x 2 X
can only appear at most once in a knowledge set and we
denote by oKðxÞ 2ΔðxÞ the unique observation such that
ðx, oKðxÞÞ 2K. This is because the environment is fixed and
once we have explored state x, we know its successor-
pattern forever according to Assumptions A2 and A3.

Suppose that the agent maintains a knowledge set to
record its exploration history. Once a new unknown state is
explored, its information can be updated according to the
knowledge update function.

Definition 8. (Knowledge Updates) The knowledge
update function update :KW ×Kw→KW is defined

by: for any knowledge set K ¼ hκ1,…, κjKji2KW and
knowledge state κ2Kw, we have

updateðK, κÞ ¼ K, if xðκÞ 2K or xðκÞ 2Xkno

hκ1,…, κjKj, κi, otherwise

�
:

We define K0 ¼ \ as the initial knowledge set.
That is, if state x has already been explored, then we skip

this repeated knowledge; otherwise, this new knowledge set
is added to the knowledge state in order.

Finally, based on the current knowledge set it maintains,
the agent can refine the possible world T by eliminating
uncertainties that have been explored.

Definition 9. (Refined PK-WTS) Let T ¼ ðX , x0,Δ,w,
AP, LÞ be a PK-WTS and K2KW be a knowledge set.
The refined PK-WTS is a new PK-WTS

TK ¼ ðX , x0,Δ
0,w,AP,LÞ (2)

such that, for any x 2 X, we have

Δ0ðxÞ ¼ foKðxÞg if x2K
ΔðxÞ if xÏKorx2Xkno

�
:

Example 2. (Running Example Cont.) We still con-
sider the PK-WTS in Figure 2. Initially, the knowledge
set of the agent is K0 ¼ \. When the agent visits
unknown state x2, it will gain a knowledge state
κ1 = (x2, {x1}) or κ2 = (x2, {x1, x3}). Then, once
the agent gains κ1 or κ2, the knowledge set will
updated to K1 ¼ updateðK0, κ1Þ ¼ hðx2, fx1gÞi or
K2 ¼ updateðK0, κ2Þ ¼ hðx2, fx1, x3gÞi, respectively.
Both cases, their refined PK-WTSs induce unique
compatible WTSs.

3.3. History-based strategies

In the partially-known setting, the agent makes decisions
not only based on the finite sequence of states it has visited.
In addition, it should also consider what it observed (suc-
cessor-pattern) at each state visited.

Definition 10. (Histories) Given a PK-WTS T, a history
in T is a finite sequence of knowledge states

Z ¼ κ0κ1/κn ¼ ðx0, o0Þðx1, o1Þ/ðxn, onÞ2Kw* (3)

such that

(i) for any i < n, we have xi+1 2 oi; and
(ii) for any i, j ≤ n, we have xi = xj 0 oi = oj.

For history Z in the form of equation (3), we call x0x1/xn 2
X* its path. We denote by Path*ðTÞ and Hist*ðTÞ the set of
all (finite) paths and histories generated in PK-WTS T,
respectively.

Intuitively, the first condition says that the agent can only
move to one of its actual successor states in oi. The second

8 The International Journal of Robotics Research 0(0)

condition captures the fact that the actual environment is
partially-known but fixed; hence, the agent must observe the
same successor-pattern for different visits of the same state.
Note that, compared with knowledge sets, histories contain
all states visited in order including those repeated state.
However, knowledge sets only contain those unknown
states explored for the first time.

Therefore, under the setting of partially-known envi-
ronment, the plan is no longer an open-loop sequence.
Instead, it is a feedback strategy that determines the next
state the agent should go to based what has been visited and
what has known, which are environment dependent.

Definition 11. (Planning Strategies) A (history-based)
planning strategy is a function

ξ :Hist*ðTÞ→X[fstopg

such that for any Z = κ1/κn, where κi = hxi, oii, we have
either (i) ξ(Z) 2 on, that is, it decides to move to some
successor state; or (ii) ξ(Z) = stop, that is, the plan is ter-
minated. We denote by StraðTÞ the set of all strategies for T.

Note that, in general, a strategy should map a history to
an executable action for the robot. However, our paper
addresses a planning problem for systems with deterministic
underlying transitions (though some transitions may be
unknown a priori). As a result, a strategy can directly assign
the target state for the robot, and there are no explicit actions
defined in our model.

Also, we note that, although a strategy is designed to
handle all possible actual environments in the possible
world T, when it applies to an actual environment T 2T, the
outcome can be completely determined.

Definition 12. (Induced Paths) Given a planning
strategy ξ 2 StraðTÞ and actual environment T 2T, the
finite path induced by strategy ξ in environment T 2T is
the unique path

ρTξ ¼ x0x1/xn 2 X*

such that

(i) "i < n : ξ((x0, δT(x0))/(xi, δT(xi))) = xi+1; and
(ii) ξ((x0, δT(x0))/(xn, δT(xn))) = stop.

Note that the agent does not know a priori which T 2T is
the actual environment. To guarantee the accomplishment
of the LTL task, a strategy ξ 2 StraðTÞ should satisfy

"T 2T : ρTξ 2Lf
pref : (4)

We denote by StrafðTÞ4StraðTÞ the set of all strategies
satisfying equation (4).

3.4. Problem formulation

To evaluate the performance of strategy ξ, a standard ap-
proach is to minimize the worst-case cost of the strategy
among all possible environments, that is,

costworstðξÞdmax
T2T

costðρTξ Þ: (5)

However, as we have illustrated by the motivating example
in Figure 1, this metric cannot capture the potential benefit
obtained from exploring unknown states and the agent may
regret due to the unexploration. To address this issue, in this
work, we propose to use regret as the metric to evaluate the
performance of a strategy.

Definition 13. (Regret) Given a partially-known en-
vironment described by PK-WTS T and a task described
by an scLTL f, the regret of strategy ξ is defined by

reg
T
ðξÞ ¼ max

T2T
costðρTξ Þ � min

ξ 02StrafðTÞ
costðρTξ 0 Þ

� �
: (6)

The intuition of the above notion of regret is as follows.
For each strategy ξ 2 StrafðTÞ and each actual environment
T 2T, costðρTξ Þ is the actual cost incurred when applying
this strategy to this specific environment, while
minξ 02StrafðTÞcostðρTξ 0 Þ is cost of the best-response strategy

the agent should have taken if it knows the actual envi-
ronment T with hindsight. Therefore, their difference is the
regret of the agent when applying strategy ξ in environment
T. Note that, the agent does not know the actual environment
T precisely a priori. Therefore, the regret of the strategy is
considered as the worst-case regret among all possible
environments T 2T.

Example 3. (Running Example Cont.) Still, we con-
sider the running example in Figure 2. Let ξ1 be the
strategy that does not explore state x2, which is referred
to as the worst-based strategy and ξ2 be the strategy that
explore state x2 first, which is referred to as the regret-
based strategy. For this PK-WTS T, there are two
compatible WTS T1,T2 2T, where δT1ðx2Þ ¼ fx1g and
δT2ðx2Þ ¼ fx1, x5g. Then

· for environment T1, we have costðρT1ξ1 Þ ¼ 11,

costðρT1ξ2 Þ ¼ 13 and minξ2StrafðTÞcostðρ
T1
ξ Þ ¼ 11;

· for environment T2, we have costðρT2ξ1 Þ ¼ 11,

costðρT2ξ2 Þ ¼ 3 and minξ2StrafðTÞcostðρ
T2
ξ Þ ¼ 3.

Therefore, the regrets for the two strategies ξ1 and ξ2 are
regTðξ1Þ ¼ maxð11� 11; 11� 3Þ ¼ 8 and
regTðξ2Þ ¼ maxð13� 11; 3� 3Þ ¼ 2, respectively.

Finally, we formally formulate the problem that we solve
in this paper as follows.

Problem 1. (Regret-Optimal scLTL Planning) Given
a possible world represented by PK-WTS T and an
scLTL task f, synthesize a strategy ξ 2 StrafðTÞ such
that

"ξ 0 2 StrafðTÞ : regT
ðξÞ ≤ reg

T
ðξ 0Þ: (7)

Zhao et al. 9

4. Knowledge-based games

In this section, we show that the regret-optimal scLTL
planning problem can be reduced to a quantitative two-
player graph-game by incorporating knowledge into the
state-space.

4.1. Knowledge-based game arena

Given PK-WTS T ¼ ðX , x0,Δ,w,AP,LÞ, its skeleton
system is a WTS

T ¼ ðX , x0, δT ,w,AP,LÞ,

where for any x 2 X, we have δT ðxÞ ¼ [o2ΔðxÞo, that is, the
successor states of x is defined as the union of all possible
successor-patterns. To incorporate with the task infor-
mation, let Af ¼ ðQ, q0,Σ, f ,QFÞ be the DFA that accepts
all good-prefixes of scLTL formula f. We construct the
product system between T and Af, denoted by

P ¼ T ÄAf ¼ ðS ¼ X ×Q, s0, δP ,wP , SFÞ,

where “Ä” is the product operator defined in Section 2.3.
However, the state-space of P is still not sufficient for

the purpose of decision-making since the explored
knowledges along the trajectory are missing. Therefore,
we further incorporate the knowledge set into the product
state-space and explicitly split the movement choice of
the agent and the non-determinism of the environment.
This leads to the knowledge-based game arena that
captures all interactions between the agent and the
partially-known environment.

Definition 14. (Knowledge-Based Game Arenas)
Given PK-WTS T, the knowledge-based game arena is a
bipartite graph

G ¼ ðV ¼ Va _[Ve, v0,EÞ,

where

· Va4X ×Q ×KW is the set of agent vertices;
· Ve4X×Q×KW×X is the set of environment vertices;
· v0 ¼ ðx0, q0,K0Þ2Va is the initial (agent) vertex, where

K0 is the initial knowledge set;
· E4ðVa ×VeÞ[ðVe ×VaÞ is the set of edges defined by: for

any va ¼ ðxa, qa,KaÞ2Va and ve ¼ ðxe, qe,Ke,bxeÞ2Ve,
we have
- hva, vei 2E whenever

(i) ðxe, qe,KeÞ ¼ ðxa, qa,KaÞ; and
(ii) bxe 2 oKaðxaÞ.

- hve, vai 2E whenever
(i) xa ¼ bxe; and
(ii) ðxa, qaÞ 2 δPðxe, qeÞ; and
(iii) Ka ¼ updateðKe, ðxa, oÞÞ for some o2ΔðxaÞ.

The intuition of the knowledge-based game arena is
explained as follows. The graph is bipartite with two
types of vertices: agent vertices from which the agent

chooses a feasible successor state to move to and envi-
ronment vertices from which the environment chooses the
actual successor-pattern in the possible world. More
specifically, for each agent vertex va ¼ ðxa, qa,KaÞ, the
first component xa represents its physical location in the
system, the second component qa represents the current
DFA state for task f and the third component Ka rep-
resents the knowledge set of the agent obtained along the
trajectory. At each agent vertex, the agent chooses to
move to a successor state. Note that since xa is the current
location, it has been explored and we have xa 2Ka, that is,
we know that the actual successor states of xa are oKaðxaÞ.
Therefore, it can move to any environment state ve ¼
ðxa, qa,Ka,bxeÞ by “remembering” the successor statebxe 2 oKaðxaÞ it chooses.

Now, at each environment state ve ¼ ðxe, qe,Ke,bxeÞ,
the meanings of the first three components are the same
as those for agent state. The last component bxe denotes
the state it is moving to. Therefore, ve can reach agent
state va ¼ ðxa, qa,KaÞ, where the first two components are
just the transition in the product system synchronizing
the movements of the WTS and the DFA. Note that we
have xa ¼ bxe since the movement has already been de-
cided by the agent. However, for the last component of
knowledge set Ka, we need to consider the following two
cases:

· If state xa has already been explored, then the agent must
observe the same successor-pattern as before. Therefore,
the knowledge set is not updated;

· If state xa has not yet been explored, then the new ex-
plored knowledge (xa, o) 2 Kw should be added to the
knowledge setKe. Note that since this is the first time the
agent visits xa, any possible observations o 2 Δ(xa)
consistent with the prior information are possible.
Therefore, it is the environment’s choice which o to be
actually observed.

Example 4. (Running Example Cont.) For PK-WTS T

and DFA Af shown in in Figures 2 and 3, respectively,
the knowledge-based game arena G is provided in Figure
4, where three knowledge sets K0,K1,K2 are given in
Example 2.
Remark 2. Let n = |Xun| be the number of the unknown
states in X. Then the knowledge-based game arena G
contains at most n! � 2n � jX j � jQj � jδT j vertices, where
jδT j is the number of transitions in the skeleton system.
Therefore, the resulting arena G is polynomial in the
sizes of the PK-WTS and DFA, but exponential in the
number of unknown states. In practice, however, the
number of unknown states is much smaller than the total
number of states.
Consider the environment vertices with at least two

successors, that is, ve 2 Ve satisfying Succ(ve) ≥ 2, which we
call as “environment vertices with decisions.” Then we have
the following structural property for G.

10 The International Journal of Robotics Research 0(0)

Proposition 1. For the knowledge-based game arena G,
there are no cycles encompassing two distinct envi-
ronment vertices with decisions.
Proof.We prove this proposition by contradiction. Suppose

that there exists a cycle that encompasses two different envi-
ronment vertices with decisions. That is, there are two different
environment vertices ve, v0e2Ve satisfying i) ve ≠ v0e; ii) there is a
sequence starting from ve to v0e; and iii) there is also a sequence

starting from v0e to ve. Then based on the construction of G, we
know that, after each environment vertex with decisions, the
knowledge sets will be updated to a different one, that is,

"ve 2Ve,"va 2 SuccðveÞ : SuccðveÞ ≥ 20KðvaÞ ≠KðveÞ,
(8)

where Kð�Þ denotes the knowledge set (third) component of
a vertex inG. From ii), we know that,Kðv0eÞ is updated from

Figure 4. Knowledge-based Game Arena G. For each edge e, the number without parentheses denotes the cost of costG(e), while the
number within parentheses denotes the weight of μ(e).

Zhao et al. 11

KðveÞ; and from iii), we know that, KðveÞ is updated from
Kðv0eÞ. Since knowledge sets are ordered sets, to satisfy ii)
and iii), we have KðveÞ ¼ Kðv0eÞ. However, this contradicts
with (8). The proof is thus completed. □

With the above proposition, we draw the following
corollary that states the relation between the sequences of G
and the environment vertices with decisions.

Corollary 1. Given the knowledge-based game arena G,
if two sequences in G end with the same vertex, then they
must visit the same environment vertices with decisions
in the same order.

Proof. By the knowledge updates defined in Definition 8,
we know that such two sequences visit the same environ-
ment vertices with decisions. Since there is no cycles en-
compassing two environment vertices with decisions, the
two sequences visit them in the same order. □

4.2. Strategies and plays

Given a game arenaG, we call a finite sequence of vertices π
= v0v1/vn2 V*a play onG if v02 Va is the initial vertex and
(vi, vi+1) 2 E,"i = 0,…, n� 1; we denote by PlayðGÞ the set
of all finite plays on G. We call π a complete play if
lastðπÞ 2Va, where lastðπÞ denotes the last vertex in π. Then
for a complete play π ¼ v0v1/v2n 2 ðVaVeÞ*Va, where
v2i ¼ ðxi, qi,KiÞ, i ¼ 0,…, n, it induces a path denoted by
πpath = x0x1/xn as well as a history

πhis ¼ ðx0, oK0ðx0ÞÞðx1, oK1ðx1ÞÞ/ðxn, oKnðxnÞÞ:

Note that, here, we have K04K14/4Kn. On the other
hand, for any history Z = κ0κ1/κn 2 Kw*, there exists a
unique complete play in G, denoted by πZ, such that its
induced history is Z.

Since the first two components of G are from the product
of T and Af, for any complete play π, we have

LðπpathÞ 2Lf
pref if and only if the second component of

lastðπÞ is an accepting state in the DFA. Therefore, we
define

VF ¼ fðxa, qa,KaÞ 2Va j qa 2QFg

as the set of accepting vertices representing the satisfaction
of the scLTL task. Here we note that without loss of gen-
erality, we terminate the construction of the product system
P ¼ T ÄAf at the accepting states. That is, in the con-
structed P and G, we only focus on the runs that satisfy the
scLTL specification f for the first time. Also, since only
edges from Ve to Va represent actual movements, we define a
weight function for G as

wG :V ×V →R (9)

where for any ve ¼ ðxe, qe,Ke,bxeÞ and va ¼ ðxa, qa,KaÞ, we
have wG(ve, va) = w(xe, xa) and wG(va, ve) = 0. Then the cost
of a play π = v0v1/vn 2 V* is defined as

costGðπÞ ¼
Pn�1

i¼0 wGðvi, viþ1Þ.

A strategy for the agent-player is a function σa : V*Va →
Ve [{stop} such that for any π 2 V*Va, either
hlastðπÞ, σaðπÞi2E or σa(π) = stop. Analogously, a strategy
for the environment-player is a function σe : V*Ve→ Va such
that for any π 2 V*Ve, we have hlastðπÞ, σeðπÞi2E. We
denote by Σa(G) and Σe(G) the sets of all strategies for the
agent and the environment, respectively. We say a strategy σ
is positional if "π, π0:lastðπÞ ¼ lastðπ0Þ0σðπÞ ¼ σðπ0Þ.
Given strategies σa 2 Σa(G) and σe 2 Σe(G), the outcome
play πσa, σe is the unique sequence v0v1/vn 2 V*Va such that

· "i < n : vi 2 Va 0 σa(v0v1/vi) = vi+1; and
· "i < n : vi 2 Ve 0 σe(v0v1/vi) = vi+1; and
· σa(v0v1/vn) = stop.

It is important to note that the environment-player cannot
play arbitrarily in the game arena, as the environment is
fixed. In other words, the environment must commit to a
specific successor-pattern it chooses at each unknown state
when the game begins. This leads to the following
definition.

Definition 15. (Strongly Positional Strategies) A
strategy of the environment-player σe 2ΣeðGÞ is said to
be strongly positional if: for any two plays π, π0 2V*Ve

where σeðπÞ ¼ ðx, q,KÞ, σeðπ0Þ ¼ ðx0, q0,K0Þ, we have

(i) last(π) = last(π0) 0 σe(π) = σe(π0);
(ii) x ¼ x00oKðxÞ ¼ oK0ðxÞ.

We denote by Se4ΣeðGÞ the set of all strongly positional
strategies for the environment player.

For the agent-player, we say σa 2 Σa(G) is a winning
strategy if for any σe2Se, we have lastðπσa, σeÞ 2VF . We
denote by Sa4ΣaðGÞ the set of all winning strategies.
Similarly to Definition 13, we can also define the regret of
an agent-player’s strategy σa2Sa in G by

regGðσaÞ ¼max
σe2Se

costGðπσa , σeÞ � min
σ0a2Sa

costGðπσ0a , σeÞ
� �

(10)

Essentially, an agent-player’s strategy σa2Sa uniquely
induces a corresponding strategy in T, denoted by
ξσa2StrafðTÞ as follows:

"Z2Hist*ðTÞ : ξσaðZÞ ¼ bX ðσaðπZÞÞ, (11)

where bX ð�Þ denotes the forth component of an environment
vertex. Also, a strongly positional strategy of the
environment-player σe2Se essentially corresponds to a
possible actual environment T2T since it needs to specify
an observation o 2 Δ(x) for each unexplored x, and once x is
explored, the observation is fixed based on the construction
of G. Finally, since costG(�) is defined only according to its
first component, for any play π 2 Play*(G), we have
costG(π) = cost(πpath). Therefore, we obtain the following
result directly.

12 The International Journal of Robotics Research 0(0)

Proposition 2. Given the PK-WTS T, scLTL task f, and
the knowledge-based game arena G, for any strategy
ξ 2 StrafðTÞ, there exists a unique corresponding agent-
player strategy σa 2Sa such that regTðξÞ ¼ regGðσaÞ.

Based on the above result, we know that, to solve
Problem 1, it suffices to find an agent-player strategy σa2Sa

in arena G that minimizes the regret defined in (10). In what
follows, we propose an efficient algorithm to synthesize
such a strategy.

To develop the efficient algorithm, we first show that a
positional strategy is sufficient to solve the regret-
minimizing problem, based on which a value iteration
can be applied to synthesize the strategy.

Lemma 1. A positional strategy is sufficient to minimize
the regret for the agent-player in game arena G, that is,
there is a positional strategy σa2Sa such that

"σ0
a 2Sa : regGðσaÞ ≤ regGðσ0aÞ

Proof. Consider a winning strategy σFa2Σa for the agent-
player in G, which means that for any σe2Se, the outcome
play πσFa , σe satisfies lastðπσFa , σeÞ2VF . Clearly, strategy σFa
needs at most finite memory since all plays πσFa , σe,"σe2Se

are finite. Now we construct a positional strategy σa2Sa

based on σFa such that

"σe 2Se : costGðπσa , σeÞ ≤ costGðπσFa , σe
Þ: (12)

The construction of strategy σa is as follows: for any en-
vironment strategy σe2Se with πσFa , σe ¼ v0v1/vn being the
outcome play and for all vk 2 Va, we define

ei ≥ k : vi ¼ vk0σaðvkÞ ¼ vkþ1: (13)

Note that strategy σa is well defined. By construction, we
directly have

lastðπσa , σeÞ ¼ lastðπσFa , σe
Þ 2VF ,"σe 2Se (14)

Thus σa is a winning strategy. Furthermore, for any σe2Se,
the outcome play πσa, σe only visits the states in πσFa , σe, since
the environment-player plays only strongly positional
strategies. Then (12) holds as we can obtain πσFa , σe by re-
moving all cycles in πσFa , σe based on the above construction.
Then it follows that

"σe 2Se : reg
σe
G ðσaÞ ≤ regσeG ðσF

a Þ: (15)

Therefore, we have

regGðσaÞ ≤ regGðσFa Þ: (16)

That is, given any winning strategy for the agent-player, we
can always find a positional winning strategy making (16)
hold. The proof is thus completed. □

5. Game-based synthesis algorithms

In this section, we present the solution of the regret-
minimizing game on the knowledge-based game arena.

5.1. Regret-minimizing strategy synthesis

Recall that, given a knowledge setK2KW,TK is the refined
PK-WTS as defined in Definition 9. We define the opti-
mistic response w.r.t. a knowledge set as follows.

Definition 16. (Optimistic Responses) Let T be a PK-
WTS and T 2T be an actual environment compatible to
the possible world. The best response of the agent w.r.t.
WTS T is defined as the minimum cost required to
achieve the scLTL task in T, that is,

brðTÞ ¼ minfcostðρÞj ρ2Path*ðTÞ, ρ~fg: (17)

Then, given a knowledge set K2KW, the optimistic re-
sponse of the agent w.r.t. knowledge set K is defined as the
minimum of the best responses among all WTSs compatible
with the refined PK-WTS, that is,

oprðKÞ ¼ minfbrðTÞ j T 2TKg: (18)

With a slight abuse of notation, for each agent vertex va ¼
ðxa, qa,KaÞ in G, we also define the optimistic response for
vertex va as the optimistic response w.r.t. its knowledge set
Ka, that is, oprðvaÞdoprðKaÞ.

Note that, the optimistic response for a knowledge set
can be easily computed by (weighted) shortest path
search algorithms such as the standard Djisktra’s algo-
rithm. Specifically, given a weighted transition system or
a graph T, for any two states (vertices) x and x0, we denote
by SPT ðx, x0Þ the weighted length of the shortest path
from x to x0 in T; for a set of states (vertices) X0, we denote
by SPT ðx,X 0Þ ¼ minx02X 0SPT ðx, x0Þ. Then we have

oprðKÞ ¼ SPT KÄAf
ðq0,QFÞ, (19)

where T K is the skeleton system of TK.
The optimistic response can be utilized to compute

the regret of an outcome play as follows. Suppose that
the agent employs a winning strategy in an underlying
environment, resulting in an outcome play π = v0v1/va,
where va ¼ ðxa, qa,KaÞ 2VF . Along this executed path,
the accumulated knowledge of the agent is Ka. Hence,
opr(va) serves as a lower-bound estimate of the cost
required to reach an accepting vertex in VF (not nec-
essarily va) in environments compatible with the cur-
rent knowledge. Additionally, costG(π) represents the
actual cost incurred when following the current strat-
egy. Therefore, the difference costG(π) � opr(va) es-
sentially quantifies the regret accrued along the outcome
play π.

However, due to the possible presence of cycles, there
is generally an infinite number of outcome plays leading
to accepting vertices in G. Therefore, enumerating all
such accepting outcome plays is not feasible. To tackle
this challenge, our approach is to focus on the shortest
paths, considering them as critical paths. We will dem-
onstrate that incorporating such critical information is
adequate for our purposes. Formally, for each accepting

Zhao et al. 13

vertex va 2 VF, let πspv0, va be a shortest path from v0 to va in
G w.r.t. cost function wG. Note that, in general there may
be multiple shortest paths v0 to va; here, we just choose an
arbitrary one and we prove that which one to choose will
not affect our final result. For each edge e 2 E, we use
notation e2 πspv0, va to denote that edge e is on path πspv0, va .
Then, we define

ESP ¼ e2E j ∃va 2VF s:t: e2πsp
v0, va

n o
as the set of critical edge that are involved in at least one
shortest path from the initial vertex v0 to an accepting vertex
va 2 VF.

Based on the above notions, now we define a new weight
function

μ :E→R (20)

that assigns each edge in the knowledge-based game arena
G as follows:

· for any hva, vei 2 Va × Ve, we set μ(va, ve) = 0;
· for any hve, vai 2 Ve × Va, we have

– if hve, vaiÏESP, then we set μ(va, ve) = ∞;
– if hve, vai 2ESP, then we have
(i) if vaÏVF, we set μ(va, ve) = 0;
(ii) if va 2 VF, we set

μðve, vaÞ ¼ SPGðv0, vaÞ � oprðvaÞ: (21)

In the above definition of μ, we essentially assess the
regret of a play when it terminates at a final state. It is
important to note that instead of using the actual cost
incurred during a play to evaluate regret, we utilize the
shortest path weight from the initial state to the accepting
state. Our subsequent analysis will show that to minimize
regret, the agent must follow a shortest path from the
initial state to an accepting state in the knowledge-based
game arena. As a result, we assign infinite weight to those
edges that are either not part of the shortest path to the
accepting states or do not lead to an accepting state at all.
However, relying solely on a shortest path search is still
not sufficient, as the environment makes choices at
vertices where new unknown states are explored.
Therefore, we further incorporate a min-max game to
capture the worst-case regret of the agent’s strategy
across all possible environments. This leads to our main
synthesis algorithm outlined in Algorithm 1.

Specifically, Algorithm 1 works as follows. First, we
construct the skeleton WTS T and the DFA Af (line 1).
Next, we create the knowledge-based game graph along
with the weight function μ (lines 2 and 3). Then, we
engage in solving a min-max game over G to attain a
minimal weight as per μ. This process is detailed by the
procedure SolveMinMaxðG, μÞ in lines 7–23. In this
min-max game, the player aims to maximize the weight at
each environment vertex while striving to minimize it at
each agent vertex. It is worth noting that min-max games
typically require a termination condition. However, in our

14 The International Journal of Robotics Research 0(0)

specific knowledge-based game arena, by Proposition 1,
we know that, there are no cycles encompassing two
distinct environment vertices with decisions (i.e., envi-
ronment vertices with at least two successors). This
structural property ensures that condition line 22 can be
fulfilled within |V| iterations. Moreover, this structural
property also guarantee that considering the shortest path
between distinct environment vertices with decisions is
adequate, as the environment has no choice within each
cycle in G. Finally, we output the optimal strategy σ+a for
the min-max game, which uniquely induces a planning
strategy ξ+ as the optimal solution.

Example 5. (Running Example Cont.) Finally, we
present the solution to the running example, whose
knowledge-based game arena G is depicted in Figure 4.
In this arena, there are three accepting vertices in VF. For
each of these vertices va 2 VF, we determine the shortest
path from v0 to va and define the weight function μ
accordingly, shown as the numbers within parentheses in
Figure 4. For instance, consider the accepting vertex
va ¼ ðx5, q1,K1Þ. The shortest path from v0 to va has a
length of 13. Given that K1 ¼ hðx2, x1Þi, the optimistic
response is oprðK1Þ ¼ 11. Therefore, the weight as-
signed to the incoming edge for va ¼ ðx5, q1,K1Þ is
calculated as 13 � 11 = 2.

In the min-max game, the agent essentially faces a de-
cision at state ðx1, q0,K0Þ: whether to explore state x2 or not.
If it decides to explore state x2, the worst-case regret it can
attain is max{2, 0} = 2. On the other hand, if it chooses not
to explore, the worst-case regret becomes 8, which is the
weight assigned to the incoming edge for accepting vertex
ðx5, q1,K0Þ. Consequently, the agent will decide to explore
state x2, leading to the regret-optimal strategy as depicted by
the red parts in Figure 4.

Remark 3. Let us discuss the complexity of the proposed
algorithm. Since the iteration of the procedure
SolveMinMaxðG, μÞ is directly conducted on the
original game arenaG, the space complexity of Algorithm
1 is exactly jV j. Furthermore, since the game graph G is
acyclic when removing those edges with infinite weight,
the value iteration of SolveMinMaxðG, μÞ can be fin-

ished in at most jV j steps with time complexity OðjV j2Þ
(Brihaye et al., 2017). Therefore, the strategy with min-
imal regret can be computed in the polynomial time in the
size of the arenaG, which is also is polynomial in the sizes
of the PK-WTS and DFA, but exponential in the number
of unknown states as we have discussed in Remark 2.
Remark 4. It is worth noting that, in Filiot et al. (2010),
an algorithm has been proposed for synthesizing regret-
minimizing strategies for reachability objectives. As
discussed in Zhao et al. (2023), by some slight modi-
fications, this algorithm can be applied to the knowledge-
based graph with cost function costG to obtain a regret-
optimal strategy. However, their algorithm is designed
for general two-player games without considering the

structural properties present in the partially-known en-
vironment setting. Specifically, the approach in Filiot
et al. (2010) requires “unfolding” the game arena based
on the ratio between the maximal and minimal weights of
the edges in the arena. This process can lead to extremely
high space complexity, especially when the ratio value is
very large and the game arena has multiple cycles in-
volved. On the other hand, our algorithm leverages the
structural properties inherent in the problem setting
based on the knowledge-based game arena. Once or-
dered knowledge is incorporated in the game arena, the
need for unfolding is eliminated, resulting in a more
efficient algorithm.

5.2. Structural properties of the game arena

Before building the correctness of our algorithm, we present
some important and necessary results showing the prop-
erties of the knowledge-based game arena G.

We first show that the optimistic responses in Definition
16 are sufficient to compute the regret for a strategy. For
convenience, we define the regret of an agent strategy
σa2Sa against an environment player σe2Se as:

regσeG ðσaÞ ¼ costGðπσa , σeÞ � min
σ0a2Sa

costGðπσ0a , σeÞ: (22)

Then, based on the definition in (10), we have
regGðσaÞ ¼ maxσe2Se

regσeG ðσaÞ.

Lemma 2. Given two strategies σa2Sa and σe2Se, the
regret of strategy σa against strategy σe satisfies

regσeG ðσaÞ ≥ costGðπσa, σeÞ � oprðlastðπσa , σeÞÞ: (23)

In particular, there is an environment strategy σ0e 2Se such

that reg
σ0e
G ðσaÞ ¼ costGðπσa, σ0eÞ�oprðlastðπσa, σ0eÞÞ.

Proof. For the above two strategies σa and σe, we write
lastðπσa, σeÞ ¼ ðx, q,KÞ. Let us consider the refined PK-
WTS w.r.t. K, that is, TK and let TK ¼ fT1,T2,…, Tmg.
Then for each environment Ti, by the construction of G,
there is a corresponding environment strategy σie2Se.
Clearly, σe2fσ1e ,…, σme g. By the construction ofG, we have

πσa , σie
¼ πσa, σe,"i ¼ 1,…,m: (24)

Then it follows that costGðπσa, σieÞ ¼ costGðπσa, σeÞ. By
equation (10), we have

regσ
i
e

G ðσaÞ ¼ costGðπσa , σeÞ � min
σ0a2Sa

costGðπσ0a , σ
i
e
Þ (25)

On the other hand, based on Definition 16, we have

oprðKÞ ¼ minfbrðTiÞ j i ¼ 1,…,mg
¼ min

i2f1,…,mg
min
σ0a2Sa

costGðπσ0a , σ
i
e
Þ: (26)

With oprðKÞ ¼ oprðlastðπσa, σeÞÞ and σe 2fσ1e ,…, σme g, it
follows that

Zhao et al. 15

regσeG ðσaÞ ≥ costGðπσa , σeÞ � oprðlastðπσa , σeÞÞ (27)

Let σ0e ¼ σ j
e , j ¼ argmini2f1,…,mgminσ0a2Sa

costGðπσ0a, σieÞ. We

have reg
σ0e
G ðσaÞ ¼ costGðπσa, σ0eÞ � oprðlastðπσa, σ0eÞÞ. The

proof is thus completed. □
With the above result, we can use the optimistic response

to compute the regret for any agent strategy σa2Sa by
regGðσaÞ ¼ maxσe2Se

costðπσa, σeÞ � oprðlastðπσa, σeÞÞð Þ.
Recall that, in the definition of weight function μ, it

assigns ∞ weight to edges that are not involved in any
shortest path. Next, we present the result stating that it is
sufficient to only consider strategies that result in shortest
outcome plays.

Proposition 3. For any winning strategy σa2Sa, there is
another positional winning strategy σ0a2Sa such that for
any environment strategy σe2Se, we have

(i) lastðπσ0a, σeÞ ¼ lastðπσa, σeÞ;
(ii) costGðπσ0a, σeÞ ¼ SPGðv0, lastðπσa, σeÞÞ.
Proof. Let σa be a winning strategy. We consider each
possible environment strategy σe2Se and the resulting
outcome play πσa, σe. For each πσa, σe, we denote by Vπσa , σe the
ordered set of environment vertices with decisions that
πσa, σe visits in sequence. For convenience, we denote
Vπσa , σeehev1,ev2,…,evmi, where m is the size of set Vπσa , σe.
Based on the construction of G, we know that, along πσa, σe,
the knowledge set will be updated to a new one only at the
vertices in Vπσa , σe. That is, denoting

πσa , σeev00v01/ev1v11v12/ev2v21/evmvm1vm2/vn, (28)

we have

i) Kðev1Þ � Kðev2Þ � / � KðevmÞ;
ii) Kðvi1Þ ¼ Kðvi2Þ ¼ / ¼ Kðeviþ1Þ for any 0 ≤ i ≤ m,

where for convenience we denote v00 = v0 andevmþ1 ¼ vn.
Now, we construct a positional strategy

σ0a :Va →Ve[fstopg from the given strategy σa as follows.
For each environment strategy σe with the corresponding
play πσa, σe in the form of (28), we search the shortest path
from vi1 to eviþ1 as π

sp

vi1,eviþ1
for each i = 0, 1,…, m � 1. Since

the environment vertex in sequence vi1/eviþ1 has only one
successors by the definition of Vπσa , σe, we can define σ0a by:
for each agent vertex in vi1/eviþ1, its successor is exactly the
successor in vi1/eviþ1; and σ0aðvnÞ ¼ stop, that is, strategy
σ0a is defined such that

πσ0a, σe ¼ πsp

v0,ev1πsp

v11,ev2/πsp
vm1, vn

: (29)

Note that by the above construction of σ0a, this strategy
may not be defined on every agent vertex va 2 Va. However,
in what follows, we show that the above construction of σ0a
is sufficient to be a well-defined positional strategy. That is,

for any two environment strategies σe, σ0e2Se, if they have a
common vertex va, then vertex va in πσ0a, σe and πσ0a, σ0e has the
same successor. We prove this by contradiction. Suppose
that there are two environment strategies σe, σ0e2Se such
that they have a common vertex va but two different suc-
cessor ve, v0e in πσ0a, σe and πσ0a, σ0e , respectively. By the con-
struction of σ0a, we know that successor v0e is defined based
on the outcome play πσa, σ0e, which can be still write in the
following form of

πσa , σ0eev000v
0
01/ev01v011v012/ev02v021/ev0mv0m1v0m2/v0n: (30)

Let vij and v0kl be the agent vertex va in plays (28) and (30),
respectively, that is, vij ¼ v0kl ¼ va. Correspondingly, we
have vi,j+1 = ve and v0k, lþ1 ¼ v0e. By Corollary 1, we have i =

k and evτ ¼ ev0τ for any τ = 1, …, i. Specifically, we have
vi1 ¼ v0k1. Since vi,j+1 ≠ vk,l+1, based on the construction of
σ0a, it holds that eviþ1≠ev0iþ1 due to the fact that if eviþ1¼ev0iþ1,
then it would hold that vi,j+1 = vk,l+1. Then, based on the
construction of σ0a, we know that, given the strategy σa, for
two different environment strategies σe, σ0e2Se, the out-
come plays πσa, σe and πσa, σ0e visit the same environment
vertex with decisions ev1,…,evi and vi1 but two different
environment vertices eviþ1 and ev0iþ1. Since strategy σa is a
well-defined strategy, each agent vertex in both sequence
vi1/eviþ1 and sequence v0i1/ev0iþ1 has only one successor.
Therefore, to visit two different environment verticeseviþ1 andev0iþ1 from the same agent vertex vi1, there should be at least one

environment vertex in vi1/eviþ1 and vi1/ev0iþ1 that has more
than one successor inG. However, this contradicts with the fact
that there is no environment vertex with decisions between evi
andeviþ1, and similarly betweenevi andev0iþ1. Therefore, strategy
σ0a is a well-defined strategy.

Next, we argue strategy σ0a satisfies that lastðπσ0a, σeÞ ¼
lastðπσa, σeÞ for any σe2Se. This is obvious since we have
lastðπσ0a, σeÞ ¼ lastðπσa, σeÞ¼ vn in (28) and (29).

Finally, we prove the constructed strategy σ0a satisfies
costGðπσ0a, σeÞ ¼ SPGðv0, lastðπσa, σeÞÞ for any σe2Se. Based
on Corollary 1, for any play π0 satisfying
lastðπ0Þ ¼ lastðπσa, σeÞ, it visits the same environment ver-
tices with decisions ev1,ev2,…,evm in the same order. By the
construction (29), we know that play πσ0a, σe captures the
shortest paths between evi and eviþ1 for each i = 1, …, m.
Therefore, we have costGðπσ0a, σeÞ ¼ SPGðv0, lastðπσa, σeÞÞ.
The proof is thus completed. □

Finally, we show that different actual environments that
agree on the same run must result in the same knowledge-set
in the constructed game arena.

Lemma 3. Let ξ 2 StrafðTÞ be a strategy and T ,T 0 2T

be two possible actual environments. We denote by σξ be
the unique strategy of the agent-player in G corre-
sponding to ξ, and by σT and σT0 be the unique strategies
of the environment-player in G corresponding to T and T 0,
respectively. Then we have

16 The International Journal of Robotics Research 0(0)

ρTξ ¼ ρT
0

ξ 5 T 0 2TKðlastðπσξ , σT ÞÞ: (31)

Proof. (0) Since ρTξ ¼ ρT
0

ξ , by the construction of G, we
know that πσξ , σT ¼ πσξ , σT 0 . Accordingly, we have
Kðlastðπσξ , σTÞÞ ¼ Kðlastðπσξ , σT 0 ÞÞ. By Definition 9, we have
T 02TKðlastðπσξ , σT 0 ÞÞ

¼ TKðlastðπσξ , σT ÞÞ.

(*) By contraposition. Suppose that ρTξ ≠ ρ
T 0

ξ and let x be
the last state in their common prefix. Since ξ is the common
strategy, we know that δT(x) ≠ δT0(x). Therefore,
ðx, δT 0 ðxÞÞÏKðlastðπσξ , σTÞÞ, which implies that
T 0ÏTKðlastðπσξ , σT ÞÞ. □

5.3. Correctness of the proposed algorithm

Now, we formally prove the correctness of our algorithm.
Specifically, we show that our algorithm is

(i) sound: in the sense that σ+a is a winning strategy for
the agent-player if reg+ < ∞;

(ii) complete: in the sense that the agent-player has no
winning strategy if reg+ = ∞;

(iii) optimal: in the sense that for any winning strategy
σa 2Sa, we have regGðσ+a Þ ≤ regGðσaÞ.

First, we show the soundness of our algorithm.

Proposition 4. Let ðσ+a , reg+Þ be the solution returned
by procedure SolveMinMaxðG, μÞ. If reg+ < ∞, then
strategy σ+a is a winning strategy. Moreover, for any
environment strategy σe2Se, we have

costGðπσ+a , σeÞ ¼ SPGðv0, lastðπσ+a , σeÞÞ: (32)

Proof. By the definition of μ, it holds that, for any π 2
Play(G) such that last(π) 2 VF, we have

costμGðπÞ<∞ 0 costGðπÞ ¼ SPGðv0, lastðπÞÞ

Now, we show that the returned σ+a is a winning strategy
if reg+ <∞. By Brihaye et al. (2017, Proposition 5), strategy
σ+a produced by the value iteration procedure
SolveMinMaxðG, μÞ satisfies

reg+ ¼ max
σe2ΣeðGÞ

costμGðπσ+a , σeÞ

¼ min
σa2ΣaðGÞ

max
σe2ΣeðGÞ

costμGðπσa, σeÞ<∞
(33)

Since Se4ΣeðGÞ, we know that, for any σe 2Se, we have
costμGðπσ+a , σeÞ<∞, which means that σ+a is a winning

strategy. Based on Proposition 3 and the definition of weight
function μ, we know that

costGðπσ+a , σeÞ ¼ SPGðv0, lastðπσ+a , σeÞÞ

The proof is thus completed. □

Note that, in equation (33), the value computed by
procedure SolveMinMax is reg+ ¼ maxσe2ΣeðGÞ
costμGðπσ+a , σeÞ. According to the definition, reg+ is not

necessarily the regret of synthesized strategy σ+a as the
environment player can only take strategy in Se4ΣeðGÞ.
Next, we show that the computed value reg+ provides
a lower-bound for the regret values of all winning
strategies.

Lemma 4. For any winning strategy σa2Sa, we have
regG(σa) ≥reg

+.
Proof. Let σ+e ¼ argmaxσe2ΣeðGÞcost

μ
Gðπσ+a , σeÞ be the opti-

mal strategy of the environment-player against σ+a . For any
σa 2Sa, we define

TðσaÞ ¼ argmin
T 02TKðlastðπ

σa , σ+e
ÞÞ

costðρT 0

ξσa
Þ (34)

as the actual environment that agrees on the knowledge-set
explored by σa and σ+e and with minimal cost. Let σTðσaÞ be
the strategy of the environment-player corresponding to
environment T(σa). Then, we claim that

costGðπσa, σTðσaÞ
Þ� min

σ0a2Sa

costGðπσ0a, σTðσaÞ
Þ ≥ reg+: (35)

To see this, suppose that there exists σ∃a 2Sa such that

costGðπσ∃a , σTðσ∃a Þ
Þ�min

σ0a2Sa

costGðπσ0a , σTðσ∃a Þ
Þ< reg+: (36)

From (33), we know that

costμGðπσ∃a , σ
+
e
Þ ≥ costμGðπσ+a , σ+e

Þ ¼ reg+: (37)

Then it follows that

costGðπσ∃a , σTðσ∃a Þ
Þ�min

σ0a2Sa

costGðπσ0a , σTðσ∃a Þ
Þ <costμGðπσ∃a , σ

+
e
Þ: (38)

Based on the definition of weight function μ, we have

costμGðπσ∃a , σ
+
e
Þ ≤ costGðπσ∃a , σ

+
e
Þ�oprðlastðπσ∃a , σ

+
e
ÞÞ: (39)

By the construction of G, given play πσ∃a , σ+e with the cor-
responding strategy being ξσ∃a , there must exist an envi-

ronment T 0 2T such that ρT
0

ξσ∃a
and πσ∃a , σ+e satisfy the one-to-

one correspondence. Therefore, we have T 0 2TKðlastðπ
σ∃a , σ

+
e
ÞÞ.

Based on Lemma 3, we know that ρTðσ
∃
aÞ

ξσ∃a
¼ ρT

0
ξσ∃a

. This further

implies that πσ∃a , σTðσ∃a Þ
¼ πσ∃a , σ+e , and thus

costGðπσ∃a , σTðσ∃a Þ
Þ ¼ costGðπσ∃a , σ

+
e
Þ (40)

Combining (38), (39), and (40), we have

min
σ0a2Sa

costGðπσ0a, σTðσ∃a Þ
Þ> oprðlastðπσ∃a , σTðσ∃a Þ

ÞÞ (41)

However, based on the definition of Tðσ∃aÞ in (34) and the
optimistic response in Definition 16, we know that

Zhao et al. 17

oprðlastðπσ∃a , σTðσ∃a Þ
ÞÞ ¼ min

ξ 02StrafðTÞ
costðρTðσ

∃
a Þ

ξ 0 Þ

¼ min
σ0a2Sa

costGðσ0a, σTðσ∃a ÞÞ
(42)

which contradicts with (41). Therefore, our claim in
equation (35) holds. Then, for any agent strategy σa 2Sa,
there exists an environment strategy σe 2Se such that

costGðπσa , σeÞ � min
σ0a2Sa

costGðπσ0a, σeÞ ≥ reg
+, (43)

which implies that regG(σa) ≥ reg+ for any σa 2Sa. □

Based on the above lemma, we are now ready to prove
the completeness of our algorithm.

Proposition 5. Let ðσ+a , reg+Þ be the solution returned
by procedure SolveMinMaxðG, μÞ. If reg+ = ∞, then
the agent-player has no winning strategy.

Proof. By contraposition. Suppose that the agent-player has
a winning strategy σa2Sa. Since
"σe2Se : lastðπσa, σeÞ 2VF , we have regG(σa) < ∞. By
Lemma 4, we further have reg+ ≤ regG(σa), which means
that reg+ < ∞. □

Finally, we establish the optimality of our algorithm,
which completes the correctness proof.

Theorem 1. Let ðσ+a , reg+Þ be the solution returned by
procedure SolveMinMaxðG, μÞ. Strategy σ+a mini-
mizes the regret of the agent-player in arena G and reg+

is indeed the regret value of strategy σ+a . Formally, we
have

reg+ ¼ regGðσ+a Þ ≤ regGðσaÞ,"σa 2Sa: (44)

Proof. First, we show that regGðσ+a Þ ≤ reg+. By Proposition
4, we know that, the strategy σ+a satisfies that for any
σe 2Se, we have

costGðπσ+a , σeÞ ¼ SPGðv0, lastðπσ+a , σeÞÞ (45)

According to Lemma 2, we have

regGðσ+a Þ ¼ max
σe2Se

costGðπσ+a , σeÞ � oprðlastðπσ+a , σeÞÞ
� �

¼ max
σe2Se

ðSPGðv0, lastðπσ+a , σeÞÞ � oprðlastðπσ+a , σeÞÞÞ

¼ max
σe2Se

costμGðπσ+a , σeÞ:

(46)

From (33), we know that

reg+ ¼ max
σe2ΣeðGÞ

costμGðπσ+a , σeÞ: (47)

Since Se4ΣeðGÞ, it naturally holds that

regGðσ+a Þ ≤ reg+: (48)

By Lemma 4, we have regG(σa) ≥reg
+ for any σa 2Sa.

Therefore, regGðσ+a Þ ¼ reg+, which completes the proof. □

5.4. Comparison with other strategies

In addition to the regret-based strategy synthesized in this
section, in the non-stochastic setting, the agent may also
choose to adopt the following two commonly used
strategies:

· Worst-Case Strategies: The agent makes decisions
conservatively to minimize the cost function as defined
in equation (5). This strategy can be synthesized by
solving a min-max game over the knowledge-based
game arena G with respect to the original weight
function wG as defined in equation (9).

· Best-Case Strategies: The agent makes decisions op-
timistically by assuming that all possible transitions exist
based on its current knowledge. Specifically, at each
instant, the agent maintains the knowledge set K and
solves a shortest path search problem in the skeleton
system of the refined PK-WTS T K. The planned path is
updated once a new unknown state is explored in the
optimistic path.

Note that when probabilistic information about those
unknown transitions is available, one can achieve a quan-
titative trade-off between the worst-case and best-case
strategies in the context of MDPs. Essentially, the objec-
tive of the proposed regret-based strategy is to achieve a
reasonable trade-off between the worst-case and best-case
strategies in the non-stochastic setting assuming no such
probabilistic information is available. In the next section, we
will present experimental results to justify that regret indeed
achieves this trade-off.

6. Case study and numerical experiments

In this section, we present both simulation and experimental
results to show the effectiveness of the regret-based strategy
when exploring the unknown regions in the partially-known
environments.

6.1. Case study 1: A team of firefighting robots

In this subsection, we present a case study to illustrate the
proposed framework. We consider a team of firefighting
robots consisting of a ground robot and a UAV moving in a
district as shown in Figure 5(a). The entire firefighting
mission in this district is undertaken by the collaboration of
the UAV and the ground robot as follows:

· Initially, the district map is completely unknown to the
robotic system. Upon the occurrence of a fire alarm, the
UAVwill first take off and reconnoiter over the district to
obtain some rough information regarding the workspace.
Suppose that, after the reconnaissance, the UAVobtains
a look down picture of the entire district. According to
the district picture, the system will know the map ge-
ometry and the semantics. Specifically, it knows the

18 The International Journal of Robotics Research 0(0)

positions of the fire and extinguisher denoted as “F” and
“E” in Figure 5(a).

· However, since some regions are covered by roofs, the
connectivities still remain partially-known to the system
after the reconnaissance. Therefore, the system only
maintains a possible world map as shown in Figure 5(b).
More detailed connectivities for some unknown regions
in the possible world still remain to be explored by the
ground robot.

· Then, based on the possible world map obtained by the
UAV, the ground robot needs to accomplish the fire-
fightingmission. Specifically, its objective is to first go to
the region with extinguisher to get fire-extinguishers and
then move to the region with fire. Let
AP ¼ ffire, extinguisherg. Then the firefighting mis-
sion can be described by the following scLTL formula:

f ¼ ð¬fire U extinguisherÞ ⋀ ◊fire

Note that, to figure out the (non-)existence of those potential
transitions under roofs, the ground robot is equipped with an
onboard camera and it has to move to the adjacent areas to
explore.

Given the above partially-known environment and the
scLTL task, we first synthesize the regret-optimal strategy
based on Algorithm 1. Based on the regret-optimal strategy,
the robot chooses to explore the below unknown region but
not to explore the above unknown region. This decision is
based on the potential cost savings and additional costs
associated with exploring these regions. For the below
unknown region, if there are no obstacles, the robot can take
a shortcut to reach the region “E” saving 14 units of cost
compared to strategies that do not explore this region. Even
if there are no available transitions, the robot will spend at
most 12 more units of cost. On the other hand, for the above
unknown region, reaching region “E”without exploring this
region can save four units of cost if there are no obstacles.
However, if there are no available transitions, an additional
six units of cost will be incurred. In Figure 6(a) and 6(b), we
illustrate two possible trajectories under the regret-optimal
strategy. In the former case, there are transitions available to

go through the below unknown regions, leading to potential
cost savings. In the latter case, the ground robot has to
backtrack and take a longer path to reach “E” due to the non-
existence of shortcut transitions.

If the ground robot follows the best-case strategy, it will
prioritize exploring unknown regions first to find shortcuts.
Figure 6(e) illustrates a scenario where the robot success-
fully finds shortcuts under both roofs, resulting in efficient
paths. However, this strategy is highly susceptible to un-
certainty and not robust. In the worst-case scenario depicted
in Figure 6(f), the robot encounters obstacles under both
roofs, leading to a much longer path. Conversely, if the
ground robot follows the worst-case strategy, it will always
avoid exploration, assuming obstacles are always present
under roofs in the worst-case scenario. As a result, re-
gardless of the actual environment (T1 or T2), the robot will
take the same path, as shown in Figure 6(c) and 6(d). The
video for the above case study is available at https://youtu.
be/W4pRJ7zrr40.

6.2. Case study 2: Collaborative mobile robots

In the previous subsection, although two different robots are
involved, it is still a single-agent planning problem as the
UAV is only used to gather information. In this subsection,
we use a case study to show that, in fact, our approach can
be further extended in two directions:

· Multi-Agent Settings: For the case of multi-agent
systems, when each agent always maintains precise
information of other agents, for example, by consistent
communications, our approach can still be applied.
Specifically, one can simply build product of the mo-
bility of each agent. Then the multi-agent planning
problem becomes a centralized synthesis problem over
the product state-space. Similar approach has also been
used in other path planning problems; see, for example,
Guo and Dimarogonas (2015).

· Partially-Known Atomic Propositions: Throughout
the paper, we assume that the transition function in some

Figure 5. Experiment setting for Case Study 1.

Zhao et al. 19

https://youtu.be/W4pRJ7zrr40
https://youtu.be/W4pRJ7zrr40

regions is not fully known a priori. In fact, all our results
can be applied to the case where the atomic propositions
in some regions are not fully known a priori. For in-
stance, we can introduce a labeling-pattern function

L :X → 22
AP
, such that LðxÞ ¼ fø, fagg means that it is

unknown a priori whether or not state x has property a
unless the agent explores x physically. Mathematically
speaking, this different setting is only a modeling issue.
To be more specific, when building the knowledge-based
game arena, a knowledge state should be defined as
ðx, oÞ 2Xun × 2AP . Then the regret-optimal synthesis
algorithm based on the knowledge-based game arena
remains unchanged. We will use the following case
study to illustrate this.

Let us consider a team of two mobile robots moving in a
workspace shown in Figure 7 to collaboratively achieve a
global task. Specifically, the workspace has five warehouses
storing two types of materials, A and B. However, the robot
only knows for sure a priori that some warehouses contain
some materials, while there is uncertainty regarding the
contents of other warehouses. The robot needs to physically
reach those warehouses to check the availability of the
materials. In Figure 7, and represent, respectively,
that the warehouse contains A for sure and the warehouse
may contain A; the same for material B. The global task for
the team of two robots is that both types of materials can be
picked up and be delivered to the target region T by any of
the robots. We use atomic proposition Ai to represent that

Figure 6. In T1, both unknown regions have shortcuts, while in T2, no unknown region has a shortcut.

20 The International Journal of Robotics Research 0(0)

robot i is at a region with material A; the same for Bi and Ti.
Then, the global task is described by the following scLTL
formula

f ¼ ⋁
i¼1;2

◊ðAi⋀◊ðBi⋀◊TiÞÞ⋁◊ðBi⋀◊ðAi⋀◊TiÞÞ
	

⋁

◊ðA1⋀◊T1Þ⋀◊ðB2⋀◊T2Þ
	

⋁ ◊ðA2⋀◊T2Þ⋀◊ðB1⋀◊T1Þ
	

which corresponds to four cases of which material is picked
up and delivered by which robot.

In Figure 7(a)–7(c), we show the trajectories of two
robots following the regret-based strategy in three different
possible worlds. Since warehouse is far away from the
initial locations of both robots, the regret-optimal strategy is
that, each robot will first independently explore warehouse

close to it.

· Figure 7(a) first shows an ideal case where robot 1
successfully finds materials in and . In this case,
once robot 1 finds material B, robot 2 will terminate all of
its action since the entire task can already be accom-
plished by robot 1.

· Figure 7(b) shows the case where robot 1 finds material
in but does not find material in . In this case, robot

2 will keep moving towards warehouse after finding
nothing in , and robot 1 will move directly towards the
target region to deliver material A.

· Figure 7(c) shows the case where both robots do not find
material A initially. Then robot 1 will explore warehouse

and robot 2 will also move towards warehouse in
case robot 1 does not find the material. However, once
robot 1 finds material B, it will terminates its current

action and changes to move towards warehouse .

The video for the above case study is available at https://
youtu.be/YS1-0ne1c0Q.

6.3. Numerical experiments on randomly
generated environments

In this section, we present numerical experiments to test the
efficiency of our algorithm and compare the performance of

the regret-based strategy against other strategies. The main
purposes of these experiments are twofold: (i) to justify that
regret is a meaningful metric for decision-making under
partially-known environments, and (ii) to demonstrate that
our algorithm is significantly more scalable compared to the
standard regret-minimizing game approach that does not
consider the structural properties of this problem. All the
following numerical experiments are conducted on a
MacBook (8 G/256G, Apple M1).

6.3.1. Comparison with the graph-unfolding approach. As
discussed in Zhao et al. (2023), the algorithm in Filiot et al.
(2010) can be applied to the knowledge-based game arena
(with some slight modifications) to obtain a regret-optimal
strategy. We refer this approach to as the graph-unfolding
approach because it requires further unfolding of the
knowledge-based game arena based on the weight function.
In the first set of experiments, we compare our algorithm
with the graph-unfolding approach by randomly generate
PK-WTST as follows. The entire workspace has |X| number
of states, and for each state, it has a randomly assigned
number of successor states, ranging from 1 to 2. These
transitions are assumed to be known. In addition to the
known states and transitions, we randomly add one more
possible transitions. The minimal and the maximal transi-
tion costs are set to be 1 and 2, respectively. The robot is
assigned with a simple scLTL task f ¼ ◊target and the
atomic proposition target is randomly assigned to states in
the generated PK-WTS. Whenever a T is generated, we
apply our algorithm and the graph-unfolding approach
independently and record the sizes of the constructed
graphs. It should be noted that, for our algorithm, we only
need to construct the knowledge-based game arena G with |
V| vertices and |E| edges, while to apply the graph-unfolding
approach, one needs further unfolding to obtain a new graph
G0 with |V0| vertices and |E0| edges. We increase the state
number |X| from 15, 20, 30, 50, 80 to 100. For each |X|, we
repeated to randomly generate T for 100 times and compute
the average statistics for each algorithm. The results are
presented in Table 1. Clearly, our algorithm uses signifi-
cantly less space and time than the graph-unfolding

Figure 7. Experiment conducted on two collaborative mobile robots, where the solid rectangle and dashed rectangle in the map denote
known and unknown regions, respectively.

Zhao et al. 21

https://youtu.be/YS1-0ne1c0Q
https://youtu.be/YS1-0ne1c0Q

approach, which is consistent with our previous theoretical
complexity analysis. Note that, in this set of experiments,
the structure of each PK-WTS is intentionally kept simple,
as our primary goal here is to compare the synthesis al-
gorithms rather than to test the scalability of each algorithm
as the system becomes more complex. The scalability issue
will be analyzed in the second set of experiments.

6.3.2. Scalability test and performance comparison. In the
second set of experiments, we compare the performance of
the regret-based strategy synthesized by our algorithm with
those of the worst/best-case strategies. Similar to the pre-
vious experiments, each time we still randomly generate a
PK-WTS with |X| states. Here, we increase the complexity
of the generated system by: (i) allowing each state to have at
most four known successors; (ii) assigning transition costs
between 1 and 100; and (iii) increasing the number of
unknown transitions as the system size grows. Specifically,
we randomly add Q log |δkno|S possible transitions, where
jδknoj denotes the total number of known transitions. Fur-
thermore, we consider two more complicated scLTL
specifications for the robot:

f1 ¼ ◊ðm⋀◊wÞ
and

f2 ¼ ◊ m⋀◊ w⋀◊ m⋀◊ w⋀◊ m⋀◊ wðððððð
⋀◊ðm⋀◊ðw⋀◊ðm⋀◊wÞÞÞÞÞÞÞÞÞ

where the atomic propositions m and w denote “material”
and “warehouse,” respectively, and they are randomly as-
signed to states in the generated PK-WTS. Intuitively, f1

and f2 require the robot to move between material and
warehouse once and five times, respectively. For each
system generated and each scLTL formula, we only use our
algorithm to synthesize the regret-based strategy. We also
synthesize the worst-case-based and best-case-based strat-
egies for the purpose of later performance comparison. Still,
for each system size, we repeated the test randomly for 100
times. Table 2 shows the average statistics of our synthesis
algorithm for formula f2. Note that, compared with Table 1,
the running time grows faster as the system size increases.
This is because we also increase the number of unknown

states as the system size grows. However, the exponential
complexity, in terms of the unknown states, seems to be
unavoidable due to the inherent lack of information. Intu-
itively, if one has no prior knowledge but still aims to
perform planning, they must account for all possible sce-
narios, which leads to exponential growth in the decision
space due to the combinatorial nature of the problem.

Note that, although the complexity of the synthesis al-
gorithm only depends on the PK-WTS T, for each time the
robot is executed, the actual performance of the algorithm
depends on the underlying actual environment T 2T, which
is unknown a priori. To compare the performance of our
regret-based strategy with other strategies, we need to test
the performance of each strategy for a large number of
underlying actual environment compatible with the possible
world following an unknown distribution. To this end, for
each possible transition in the generated PK-WTS T, we
further assume that there is a probability p 2 [0, 1] that there
is an obstacle in the corresponding path, that is, the tran-
sition does not exist. Note that this probability information
is not used in the planning algorithm, as we consider a non-
stochastic setting; it is only used for the valuation purposes.
Based on the above settings, for each randomly generated
PK-WTS T with different sizes, we further randomly
generate an actual environment T 2T using parameter p 2
{0, 0.2, 0.5, 0.8, 1}. The regret-based strategy, the worst-
case-based strategy and the best-case-based strategy are
then independently applied to the same environment T 2T

and we record the corresponding actual cost of each
strategy. For each combination of state number |X| with
probability p, we generate 100 actual environments in total.
The statistic results for the average cost for each strategy
among the 100 randomly generated instances for tasks f1

and f2 are shown in Figures 8 and 9, respectively.

6.3.4. Analysis of the experimental results. Clearly, if the
obstacle probability is p = 0, that is, the possible transitions
always exist, then the best-case strategy should have the
minimum cost. On the other hand, if the obstacle probability
is p = 1, that is, the possible transitions always do not exist,
the obviously the worst-case strategy should have the
minimum cost. However, our aim here is to address the

Table 1. Numerical experiments on the comparison between our approach and the graph-unfolding approach. In our approach, “model
time” refers to the time required to construct the game arena, while in the graph-unfolding approach, “model time” refers to the time
required to construct the unfolded game arena.

Our approach Graph-unfolding approach

|X| jδT j Vertices (|V|) Edges (|E|) Model Time Solve Time Vertices (|V0|) Edges (|E0|) Model Time Solve Time

15 23 176 215 0.0052 0.0063 119904 145987 1.436 6.129
20 29 247 306 0.0091 0.0099 229344 284345 3.525 17.387
30 47 611 722 0.0387 0.0293 1394106 1645963 28.13 237.14
50 78 815 999 0.0991 0.0571 2769884 3413719 66.76 1866.3
80 121 1048 1248 0.1115 0.0793 4367065 5199855 200.86 3422.1
100 154 1319 1562 0.2331 0.1694 10543919 12667063 831.81 -

22 The International Journal of Robotics Research 0(0)

scenario where such probability information is not available
beforehand. The according to Figures 8 and 9, we further
have the following observations.

· Regret-Based versus Worst-Case-Based: We note that
the performance of worst-case strategy is the least
sensitive to the probability of obstacles. However, it is
generally conservative especially when the probability
of obstacles is low. Compared with the worst-case

strategy, our regret-based strategy has better perfor-
mance in a wide range of probabilities. Particularly, by
comparing Figures 8 and 9, this advantage becomes
more significant in the complex task f2 than in the
simpler task f1.

· Regret-Based versus Best-Case-Based: We note that the
performance of the best-case strategy is the most sen-
sitive to the probability of obstacles. The advantage of
our regret-based strategy compared to the best-case

Table 2. Numerical scalability experiments on randomly generated systems for task f2.

PK-WTS T PS P Game arena G

|X| jδT j |S| jδPj |V| |E| Model time Solve time

15 37 100 254 2176 3097 0.3697 0.1739
20 51 121 328 3810 5570 1.0731 0.4416
30 79 198 522 6129 8866 1.4202 1.0163
50 132 293 753 41575 60363 32.467 23.253
80 192 485 1173 83508 118266 56.018 40.084
100 261 577 1396 172811 227353 126.39 101.93

Figure 8. The average performances of different strategies in randomly generated environments for task f1.

Figure 9. The average performances of different strategies in randomly generated environments for task f2.

Zhao et al. 23

strategy is better illustrated in Figure 8 for task f1.
Specifically, we observe that the regret-based strategy
still performs better over a wide range of probabilities.
However, in Figure 9 for taskf2, the performances of the
regret-based strategy and the best-case strategy become
very close, with the former not outperforming the latter
in more than half of the probability range. This is due to
the long horizon required to accomplish task f2, that is,
the robot must repeat visits to two regions for five times
across the entire workspace. The best-case strategy,
which always opts for exploration first, benefits from the
long horizon since the cost is averaged over time. This
explains why the advantage of the regret-based strategy
over the best-case strategy is less significant for f2

compared to f1.

Therefore, the experimental results further support our
earlier claim that regret is a meaningful metric when the
environment is partially known and no probabilistic in-
formation is available a priori. Essentially, the regret-
based strategy achieves a reasonable trade-off between
the worst-case and best-case strategies. Note that the
advantage of this metric is more pronounced for “mid-
horizon tasks” where the robot only needs to traverse the
unknown workspace a few times rather than repeatedly
working in it. In the latter case, using the best-case
strategy to explore unknown states freely can be bene-
ficial, as the exploration cost will eventually average out
over time.

7. Conclusions

In this paper, we introduced a novel approach for optimal
path planning to satisfy scLTL specifications within
partially-known environments. We utilized the concept of
regret to achieve the tradeoff between actual costs in an
environment and potential benefits from exploring un-
known regions. Our framework included a knowledge-
based model to formally represent partially-known sce-
narios, along with an efficient algorithm for synthesizing
optimal strategies with minimal regret. Case studies and
numerical experiments demonstrated the efficacy of our
approach, particularly in scenarios lacking probabilistic
prior information.

Our work brings new insights and provides a new
framework for path planning in partially-known environ-
ments. Regarding the future works, we identify several
important directions for extending our regret-based path
planning framework.

· First, in our current work, we focus on solving the regret-
optimal planning problem within a monolithic system
model. While this approach can be, in principle, ex-
tended to multi-robot teams with information exchanges,
the complexity scales exponentially as the number of
agents increases. Therefore, in future research, we plan
to explore computationally efficient methods, such as

sampling-based approaches, to tackle the regret-optimal
planning problem in multi-agent settings.

· Second, our current work focuses on addressing infor-
mation uncertainty while assuming the underlying en-
vironment is purely deterministic. In future research, we
aim to further investigate the regret-optimal reactive
control synthesis problem under partially-known but
non-deterministic environments. This task presents a
greater challenge than planning in such environments, as
the environment is not constrained to a strongly posi-
tional strategy for all vertices in the game.

· Third, in this work, we aim to synthesize a regret-optimal
strategy in an offline manner, taking all future possi-
bilities into account. However, in some applications, the
robot can only incrementally build a partial map within
its horizon during exploration. In the future, we would
like to investigate how to design a limited-lookahead
version of the planning strategy that minimizes regret
on-the-fly, based on real-time information.

· Finally, this work considers a purely non-stochastic control
setting, assuming a complete absence of prior probabilistic
information. However, in certain scenarios, it is possible to
estimate rough probabilistic information even without
precise knowledge. For instance, one might know that the
probability of a specific transition falls within an interval,
leading to the framework of interval MDPs. In future
studies, we aim to explore how the regret-based metric can
be integrated with such rough probabilistic information for
the purpose of path planning.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with re-
spect to the research, authorship, and/or publication of this article.

Funding

The author(s) disclosed receipt of the following financial support
for the research, authorship, and/or publication of this article: This
work was supported by the National Natural Science Foundation of
China (62173226, 92367203).

ORCID iDs

Jianing Zhao https://orcid.org/0000-0002-1579-0522
Xiang Yin https://orcid.org/0000-0003-1944-1570

Supplemental Material

Supplemental material for this article is available online.

References

Ayala AM, Andersson SB and Belta C (2013) Temporal logic
motion planning in unknown environments. In: 2013 IEEE/
RSJ International Conference on Intelligent Robots and
Systems (IROS), Tokyo, Japan, 03–07 November 2013.
IEEE, 5279–5284.

Baier C and Katoen JP (2008) Principles of Model Checking.
Cambridge: MIT Press.

24 The International Journal of Robotics Research 0(0)

https://orcid.org/0000-0002-1579-0522
https://orcid.org/0000-0002-1579-0522
https://orcid.org/0000-0003-1944-1570
https://orcid.org/0000-0003-1944-1570

Belta C and Sadraddini S (2019) Formal methods for control
synthesis: an optimization perspective. Annual Review of
Control, Robotics, and Autonomous Systems 2: 115–140.

Belta C, Yordanov B and Gol EA (2017) Formal Methods For
Discrete-Time Dynamical Systems. Cham, Switzerland:
Springer, 89.

Bertoli P, Cimatti A, Roveri M, et al. (2006) Strong planning under
partial observability. Artificial Intelligence 170(4-5): 337–384.

Blackwell D (1956) An analog of the minimax theorem for vector
payoffs. Pacific Journal of Mathematics 6(1): 1–8.

Bloem R, Chatterjee K, Greimel K, et al. (2014) Synthesizing
robust systems. Acta Informatica 51: 193–220.

Bozkurt AK, Wang Y, Zavlanos MM, et al. (2020) Control syn-
thesis from linear temporal logic specifications using model-
free reinforcement learning. In: IEEE International Confer-
ence on Robotics and Automation (ICRA), 31 May - 31
August, 2020, Virtual, 10349–10355.

Brafman RI and De Giacomo G (2019) Planning for LTLf/LDLf
goals in non-markovian fully observable nondeterministic
domains. In: International Joint Conference on Artificial
Intelligence (IJCAI), August 10-16, 2019, Macao, China,
1602–1608.

Brihaye T, Geeraerts G, Haddad A, et al. (2017) Pseudopolynomial
iterative algorithm to solve total-payoff games and min-cost
reachability games. Acta Informatica 54(1): 85–125.

Cadilhac M, Pérez GA and Mvd B (2019) The impatient may use
limited optimism to minimize regret. International Confer-
ence on Foundations of Software Science and Computation
Structures. Cham, Switzerland: Springer, 133–149.

Cai M, Peng H, Li Z, et al. (2021a) Learning-based probabilistic
LTL motion planning with environment and motion uncer-
tainties. IEEE Transactions on Automatic Control 66(5):
2386–2392.

Cai M, Xiao S, Li Z, et al. (2021b) Optimal probabilistic motion
planning with potential infeasible ltl constraints. IEEE
Transactions on Automatic Control 68(1): 301–316.

CaiM, Aasi E, Belta C, et al. (2023) Overcoming exploration: deep
reinforcement learning for continuous control in cluttered
environments from temporal logic specifications. IEEE Ro-
botics and Automation Letters 8(4): 2158–2165.

Cardona GA and Vasile CI (2024) Planning for heterogeneous
teams of robots with temporal logic, capability, and resource
constraints. The International Journal of Robotics Research
43(13): 2089–2111.

Chatterjee K, Randour M and Raskin JF (2014) Strategy synthesis
for multi-dimensional quantitative objectives. Acta In-
formatica 51(3): 129–163.

Cho K, Suh J, Tomlin CJ, et al. (2017) Cost-aware path planning
under co-safe temporal logic specifications. IEEE Robotics
and Automation Letters 2(4): 2308–2315.

Cimatti A, Pistore M, Roveri M, et al. (2003) Weak, strong, and
strong cyclic planning via symbolic model checking. Artifi-
cial Intelligence 147(1–2): 35–84.

Ding X, Smith SL, Belta C, et al. (2014) Optimal control of
markov decision processes with linear temporal logic
constraints. IEEE Transactions on Automatic Control
59(5): 1244–1257.

Fiaz UA and Baras JS (2020) Fast, composable rescue mission
planning for uavs using metric temporal logic. In: 21st
IFAC World Congresse, July 11-17, 2020, Virtual,
15404–15411.

Filiot E, Gall TL and Raskin JF (2010) Iterated regret minimization
in game graphs. International Symposium on Mathematical
Foundations of Computer Science. Berlin, Heidelberg,
Germany: Springer, 342–354.

Fridovich-Keil D, Fisac JF and Tomlin CJ (2019) Safely proba-
bilistically complete real-time planning and exploration in
unknown environments. In: International Conference on
Robotics and Automation (ICRA), Montreal, Canada, 20–24
May 2019. IEEE, 7470–7476.

Fu J and Topcu U (2014) Probably approximately correct mdp
learning and control with temporal logic constraints. Ro-
botics: Science and Systems. USA: MIT Press.

Fu J and Topcu U (2016) Synthesis of joint control and active
sensing strategies under temporal logic constraints. IEEE
Transactions on Automatic Control 61(11): 3464–3476.

Geffner T and Geffner H (2018) Compact policies for fully ob-
servable non-deterministic planning as sat. Proceedings of the
International Conference on Automated Planning and
Scheduling 28: 88–96.

Goel G and Hassibi B (2023) Regret-optimal estimation and
control. IEEE Transactions on Automatic Control 68(5):
3041–3053.

Gundana D and Kress-Gazit H (2021) Event-based signal temporal
logic synthesis for single and multi-robot tasks. IEEE Ro-
botics and Automation Letters 6(2): 3687–3694.

Guo M and Dimarogonas DV (2015) Multi-agent plan re-
configuration under local ltl specifications. The International
Journal of Robotics Research 34(2): 218–235.

Guo M and Zavlanos MM (2018) Probabilistic motion planning
under temporal tasks and soft constraints. IEEE Transactions
on Automatic Control 63(12): 4051–4066.

Hasanbeig M, Kantaros Y, Abate A, et al. (2019) Reinforcement
learning for temporal logic control synthesis with probabi-
listic satisfaction guarantees. In: 58th IEEE Conference on
Decision and Control (CDC), Nice, France, 11–13 December
2019. IEEE, 5338–5343.

Hazan E (2016) Introduction to online convex optimization.
Foundations and Trends® in Optimization 2(3–4): 157–325.

Hazan E, Kakade S and Singh K (2020) The nonstochastic control
problem. Algorithmic Learning Theory PMLR, 408–421.

Ho QH, Sunberg ZN and Lahijanian M (2024) Sampling-based
reactive synthesis for nondeterministic hybrid systems. IEEE
Robotics and Automation Letters 9(2): 931–938.

Hunter P, Pérez GA and Raskin JF (2017) Reactive synthesis
without regret. Acta Informatica 54(1): 3–39.

Hustiu S, Mahulea C, Kloetzer M, et al. (2024) On multi-robot
path planning based on Petri net models and LTL speci-
fications. IEEE Transactions on Automatic Control 69(9):
6373–6380.

Kantaros Y and Zavlanos MM (2018) Sampling-based optimal
control synthesis for multirobot systems under global tem-
poral tasks. IEEE Transactions on Automatic Control 64(5):
1916–1931.

Zhao et al. 25

Kantaros Y and Zavlanos MM (2020) Stylus*: a temporal logic
optimal control synthesis algorithm for large-scale multi-
robot systems. The International Journal of Robotics
Research 39(7): 812–836.

Kantaros Y, Kalluraya S, Jin Q, et al. (2022) Perception-based
temporal logic planning in uncertain semantic maps. IEEE
Transactions on Robotics 38(4): 2536–2556.

Kloetzer M and Belta C (2009) Automatic deployment of dis-
tributed teams of robots from temporal logic motion speci-
fications. IEEE Transactions on Robotics 26(1): 48–61.

Kloetzer M and Mahulea C (2016) Multi-robot path planning
for syntactically co-safe LTL specifications. In: 13th In-
ternational Workshop on Discrete Event Systems (WO-
DES), Xi’an, China, 30 May 2016–01 June. IEEE,
452–458.

Kloetzer M and Mahulea C (2020) Path planning for robotic teams
based on ltl specifications and petri net models. Discrete
Event Dynamic Systems 30(1): 55–79.

Kress-Gazit H, Lahijanian M and Raman V (2018) Synthesis for
robots: guarantees and feedback for robot behavior. Annual
Review of Control, Robotics, and Autonomous Systems 1:
211–236.

Kwiatkowska M, Norman G and Parker D (2022) Probabilistic
model checking and autonomy. Annual Review of Control,
Robotics, and Autonomous Systems 5: 385–410.

Lacerda B and Lima PU (2019) Petri net based multi-robot task
coordination from temporal logic specifications. Robotics and
Autonomous Systems 122: 103289.

Lacerda B, Faruq F, Parker D, et al. (2019) Probabilistic planning
with formal performance guarantees for mobile service ro-
bots. The International Journal of Robotics Research 38(9):
1098–1123.

Lahijanian M, Maly MR, Fried D, et al. (2016) Iterative temporal
planning in uncertain environments with partial satisfaction
guarantees. IEEE Transactions on Robotics 32(3): 583–599.

LaValle SM (2006) Planning Algorithms. United Kingdom:
Cambridge University Press.

Leung K, Aréchiga N and Pavone M (2023) Backpropagation
through signal temporal logic specifications: infusing logical
structure into gradient-based methods. The International
Journal of Robotics Research 42(6): 356–370.

Lin H (2014) Mission accomplished: an introduction to formal
methods in mobile robot motion planning and control. Un-
manned Systems 2(02): 201–216.

Liu Z, Guo M and Li Z (2024) Time minimization and online
synchronization for multi-agent systems under collaborative
temporal logic tasks. Automatica 159: 111377.

Luckcuck M, Farrell M, Dennis LA, et al. (2019) Formal speci-
fication and verification of autonomous robotic systems: a
survey. ACM Computing Surveys 52(5): 1–41.

Luo X and Zavlanos MM (2022) Temporal logic task allocation in
heterogeneous multirobot systems. IEEE Transactions on
Robotics 38(6): 3602–3621.

Luo X, Kantaros Y and Zavlanos MM (2021) An abstraction-
free method for multirobot temporal logic optimal control
synthesis. IEEE Transactions on Robotics 37(5):
1487–1507.

Lv P, Luo G,Ma Z, et al. (2023) Optimal multi-robot path planning
for cyclic tasks using petri nets.Control Engineering Practice
138: 105600.

Mahulea C, Kloetzer M and González R (2020) Path Planning of
Cooperative Mobile Robots Using Discrete Event Models.
Hoboken: John Wiley & Sons.

Muise C, Belle VandMcIlraith S (2014) Computing contingent plans
via fully observable non-deterministic planning. In: Proceedings
of the AAAI Conference on Artificial Intelligence, July 27–31,
2014, Québec City, Québec, Canada, Vol. 28.

Muvvala K, Amorese P and LahijanianM (2022) Let’s collaborate:
regret-based reactive synthesis for robotic manipulation. In:
2022 International Conference on Robotics and Automation
(ICRA), Philadelphia, PA, 23–27 May 2022. IEEE,
4340–4346.

Sahin YE, Nilsson P and Ozay N (2020) Multirobot coordination
with counting temporal logics. IEEE Transactions on Ro-
botics 36(4): 1189–1206.

Scher G and Kress-Gazit H (2020)Warehouse automation in a day:
from model to implementation with provable guarantees. In:
16th IEEE International Conference on Automation Science
and Engineering (CASE), Hong Kong, China, 20–21 August
2020, 280–287.

Shalev-Shwartz S, Adsdsadsa N, Sdfkdj M, et al. (2012) Online
learning and online convex optimization. Foundations and
Trends® in Machine Learning 4(2): 107–194.

Smith SL, Tumová J, Belta C, et al. (2011) Optimal path planning
for surveillance with temporal-logic constraints. The Inter-
national Journal of Robotics Research 30(14): 1695–1708.

Ulusoy A, Smith SL, Ding XC, et al. (2013) Optimality and ro-
bustness in multi-robot path planning with temporal logic
constraints. The International Journal of Robotics Research
32(8): 889–911.

Vardi MYand Wolper P (1986) An automata-theoretic approach to
automatic program verification. In: 1st Symposium in Logic
in Computer Science (LICS), June 16-18, 1986, Cambridge,
MA, USA. IEEE Computer Society.

Vasile CI, Li X and Belta C (2020) Reactive sampling-based path
planning with temporal logic specifications. The Interna-
tional Journal of Robotics Research 39(8): 1002–1028.

Wang Y, Nalluri S and Pajic M (2020) Hyperproperties for ro-
botics: planning via hyperltl. In: 2020 IEEE International
Conference on Robotics and Automation (ICRA), 31 May -
31 August, 2020, Virtual. IEEE, 8462–8468.

Wolff EM, Topcu U and Murray RM (2012) Optimal control with
weighted average costs and temporal logic specifications.
Robotics: Science and Systems. USA: MIT Press.

Wolff EM, Topcu U and Murray RM (2013) Optimal control of
non-deterministic systems for a computationally efficient
fragment of temporal logic. In: 52nd IEEE Conference on
Decision and Control (CDC). IEEE, 3197–3204.

Yan YH, Zhao P and Zhou ZH (2023) Online non-stochastic
control with partial feedback. Journal of Machine Learn-
ing Research 24(273): 1–50.

Yin X, Gao B and Yu X (2024) Formal synthesis of controllers for
safety-critical autonomous systems: developments and
challenges. Annual Reviews in Control 57: 100940.

26 The International Journal of Robotics Research 0(0)

Yu P and Dimarogonas DV (2022) Distributed motion coordi-
nation for multirobot systems under LTL specifications. IEEE
Transactions on Robotics 38(2): 1047–1062.

Yu P, Gao Y, Jiang FJ, et al. (2023) Online control synthesis
for uncertain systems under signal temporal logic
specifications. The International Journal of Robotics
Research.

Yu P, Tan X and Dimarogonas DV (2024) Continuous-time
control synthesis under nested signal temporal logic
specifications. IEEE Transactions on Robotics 43(6):
765–790.

Zhao J, Zhu K, Li S, et al. (2023) To explore or not to explore:
regret-based ltl planning in partially-known environments. In:
22nd IFAC World Congresse, 9 July – 14 July 2023, Yo-
kohama, Japan, 12171–12177.

Zhou B, Pan J, Gao F, et al. (2021) Raptor: robust and perception-
aware trajectory replanning for quadrotor fast flight. IEEE
Transactions on Robotics 37(6): 1992–2009.

Zhou H, Song Y and Tzoumas V (2023) Safe non-stochastic
control of control-affine systems: an online convex optimi-
zation approach. IEEE Robotics and Automation Letters
8(12): 7873–7880.

Zhao et al. 27

	No-regret path planning for temporal logic tasks in partially-known environments
	1. Introduction
	1.1. Backgrounds and motivations
	1.2. Our results and contributions
	1.3. Related works
	1.3.1. LTL Planning in known environments
	1.3.2. Planning in unknown environments
	1.3.3. Planning in non-deterministic domains
	1.3.4. Regret-optimal graph games
	1.3.5. Non-stochastic optimal control

	1.4. Organizations

	2. Preliminaries
	2.1. Weighted transition systems
	2.2. Linear temporal logic specifications
	2.3. Path planning for scLTL specifications

	3. Planning in partially-known environments
	3.1. Modeling of partially-known environments
	3.2. Knowledge by explorations
	3.3. History-based strategies
	3.4. Problem formulation

	4. Knowledge-based games
	4.1. Knowledge-based game arena
	4.2. Strategies and plays

	5. Game-based synthesis algorithms
	5.1. Regret-minimizing strategy synthesis
	5.2. Structural properties of the game arena
	5.3. Correctness of the proposed algorithm
	5.4. Comparison with other strategies

	6. Case study and numerical experiments
	6.1. Case study 1: A team of firefighting robots
	6.2. Case study 2: Collaborative mobile robots
	6.3. Numerical experiments on randomly generated environments
	6.3.1. Comparison with the graph-unfolding approach
	6.3.2. Scalability test and performance comparison
	6.3.4. Analysis of the experimental results

	7. Conclusions
	Declaration of conflicting interests
	Funding
	ORCID iDs
	Supplemental Material
	References

