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Abstract— This paper investigates the problem of safe visual
servoing control of manipulators using an uncalibrated eye-
in-hand camera based on control barrier functions (CBFs).
Traditional CBFs are defined in the workspace, corresponding
to the global coordinates of the base frame. However, when
the camera’s position or orientation is adjusted for a better
field of view, it becomes uncalibrated, making it challenging to
obtain the precise positions of the robot and obstacles using
onboard sensors like a camera. To address this, we propose
a novel visual servoing control barrier function (VS-CBF) for
manipulators, which depends only on the image and depth data
sensed by an RGB-D camera. Given an uncalibrated camera,
we develop an adaptive estimator for the unknown camera
parameters. Based on this estimator, we also design a kinematic
visual servoing control law as a nominal controller, ensuring the
convergence of the robotic system. The safe controller is then
obtained by solving a quadratic programming problem that
incorporates the designed VS-CBF and the nominal controller.
Finally, experimental results conducted on a UR3 manipulator
are presented to demonstrate the effectiveness of our approach.

I. INTRODUCTION

Safety is one of the fundamental challenges in robotics
and autonomous systems. Generally, safety refers to the
requirement that an autonomous system never violates a
given specification [20]. Since safety must be ensured over
the entire operational horizon, safety-critical control has
become a significant and challenging research topic. Over
the past years, control barrier functions (CBFs) [5], [39],
[4] have emerged as a powerful approach for designing
controllers with provable safety guarantees. By defining a
barrier function that encodes safety constraints, CBFs enable
the synthesis of control policies that keep the system within
a safe set at all times, even in the presence of uncertainties
and disturbances.

CBFs were first introduced in [5] to enforce safety by
defining a forward-invariant set characterized by a contin-
uously differentiable function and an inequality constraint
on the control input. Building on this foundation, various
advanced CBF formulations have been developed to accom-
modate different classes of control systems. To be specific, a
high-order CBF was proposed in [34] for systems with high
relative degrees. For the similar purpose, the authors of [26],
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[25], [7] introduced a CBF construction approach for com-
plex autonomous systems via reduced-order models. In [35],
an adaptive CBF was designed to address systems with noisy
dynamics and time-varying control bounds. Additionally, [8]
considered CBFs tailored for Euler-Lagrange systems with
input constraints.

Recently, the application of CBFs in robotics has demon-
strated considerable success [9]. In [10] and [29], CBFs
were employed to ensure field-of-view coverage and obstacle
avoidance for UAVs, respectively. In [11], they were applied
to legged robots to achieve safe foot placement. Moreover,
CBFs have proven to be effective in enhancing safety in
autonomous driving [36], [40]. The authors of [19] uti-
lized CBFs to prevent singularities in robotic manipulators,
while [37] explored their use in soft robots for compliant
obstacle avoidance. In addition, an open-source software
for implementing CBF-based safety in wheeled robots was
developed in [6], demonstrating the effectiveness of CBFs
on a human-support robot. Furthermore, in many scenarios,
designing a specific CBF formulation is challenging due to
the complex environments and unknown system dynamics.
To address this, various learning-based approaches for syn-
thesizing CBFs have been extensively studied in recent years
[28], [27], [21], [14], [22].

On the other hand, constructing a feasible CBF generally
relies on the global coordinate frame and precise state
information. However, in many practical scenarios, obtaining
exact state information is challenging due to sensor limita-
tions and the absence of a common coordinate framework.
Motivated by this, an increasing number of studies have
explored CBFs for partially observed control systems and
perception-based CBFs defined by various types of sensors.
Specifically, in [2], [3], the authors proposed observer-based
CBFs using output feedback to ensure the safety of partially
observed control systems. In [42] and [15], image-based
CBFs were designed to maintain the field of view for
UAVs and to ensure connectivity in multi-UAV systems,
respectively. In [1] and [16], image-based and LiDAR-based
CBFs were introduced for obstacle avoidance in unknown
environments. Furthermore, [41] developed a neural graph
CBF leveraging LiDAR point clouds, demonstrating its ef-
fectiveness for obstacle avoidance in large-scale multi-robot
systems. Despite these advancements, to the best of our
knowledge, the problem of perception-based safe control
for robotic manipulators with CBF-based safety guarantees
remains an open challenge in the current literature.

Visual servoing control is one of the most important
approaches for enabling robotic manipulators to perform



complex tasks using real-time vision feedback from cameras
[18]. In many practical scenarios, cameras are uncalibrated,
which can occur easily due to adjustments in their positions
or orientations. To address this issue, [23] introduced the
concept of a depth-independent interaction matrix, which
ensures that unknown camera parameters appear linearly
in the closed-loop dynamics. Based on this, the authors
proposed an estimator to adaptively estimate these param-
eters and developed a visual servoing dynamic control law
using the image error and estimated parameters to ensure
the manipulator’s convergence. Hereafter, the visual servoing
problems of manipulators with uncalibrated fixed camera
and eye-in-hand camera were successfully solved by [31],
[32], [30]. Moreover, such visual servoing approach has also
demonstrated effectiveness across various types of robotic
manipulators, including the manipulation of deformable ob-
jects [12], [13], soft robotic manipulators [33], [38], [37],
and flexible-joint manipulators [24]. However, the safety
was not considered in most of the aforementioned works.
Notably, the authors of [37] utilized CBFs to enforce force
input constraints, though the CBF was not constructed in the
image space. To this end, we are highly motivated to consider
the general safety-critical visual servoing control problem of
manipulators with uncalibrated camera.

In this paper, we investigate the problem of safe visual
servoing control for manipulators equipped with an eye-in-
hand RGB-D camera. We assume that the camera’s posi-
tion can be adjusted within a certain range, and thus its
parameters are bounded by known upper and lower limits.
First, we develop a kinematic servoing control law with
an adaptive parameter estimator based on the image and
depth information captured by the camera. This ensures the
convergence of the manipulator and serves as a nominal
controller in the subsequent safe control synthesis. Then,
we introduce a new concept of visual servoing control
barrier function (VS-CBF) defined in the space of image
and depth, which can be dynamically updated in real time
based on the sensed visual data. The safe controller is then
synthesized by solving a quadratic programming problem
that incorporates the designed VS-CBF with the nominal
controller. Experiments on UR3 manipulators are conducted
to validate the effectiveness of the proposed approach. The
key contributions of this work are two-fold:

• We develop a nominal visual servoing kinematic con-
troller for manipulators, in contrast to previous works
that focus on dynamic-level control [23], [31], [32],
[30]. This kinematic approach is more suitable for
controlling physical manipulators, as their low-level
dynamic control is typically well-designed and encapsu-
lated, making it generally impossible to directly perform
the dynamic control.

• Compared with the visual CBF proposed in [1] for
mobile robots, the VS-CBF we propose is typically de-
signed for the kinematics of manipulators and accounts
for the uncalibrated camera by designing an adaptive
parameter estimator, making it more effective for real-
world manipulator control scenarios.

The remaining part of this paper is organized as follows.
In Section II, the preliminaries are introduced and the CBF-
based safe vision servoing kinematic control problem is for-
mally defined. In Section III, we develop the vision servoing
controller together with an adaptive estimator to achieve the
image-based control at the kinematic level. In Section IV, we
first propose the general definition of the visual servoing con-
trol barrier function (VS-CBF), based on which we design
a specific VS-CBF and obtain the safe controller by solving
a quadratic programming problem optimization problem that
guarantees the safety. In Section V, experimental results are
presented and the conclusion is drawn in Section VI.

Notations: For two vectors v1,v2 ∈ Rn, we denote by
v1 ≤ v2 if v1[i] ≤ v2[i] for each i = 1, . . . , n. given a
vector x = [x1, x2, x3]

T ∈ R3, we define its skew-symmetric
matrix as

sk(x) =

 0 −x3 x2

x3 0 −x1

−x2 x1 0


A continuous function α :R→R is said to be a class K∞
function, denoted by α ∈ K∞, if α(0) = 0, α is strictly
increasing, and lims→∞ α(s) = ∞. Furthermore, α is said
to be an extended class K∞ function, denoted by α∈Ke∞, if
α(0) = 0, α is strictly increasing, and lims→±∞ α(s)=±∞.

II. PRELIMINARIES & PROBLEM FORMULATION

A. Kinematics & Camera Model

Let ξ(t) ∈ R3 and ψ(t) ∈ [−π, π]3 be the position and
the orientation of the end-effector with respect to the robot
base frame, respectively. Let q(t) ∈ Rn be the joint angle
of the manipulator, where n is the number of DOFs. The
kinematics of the manipulator is given by[

ξ̇(t)

ψ̇(t)

]
=

[
Jξ(q(t))
Jψ(q(t))

]
︸ ︷︷ ︸

J(q(t))

q̇(t), (1)

where J(q(t))∈R6×n is the Jacobian matrix of the manip-
ulator. In the kinematic-level control of the robot, we will
consider q̇(t) as the control input, i.e.,

u(t) = q̇(t). (2)

In this paper, we focus on the position of end-effector whose
dynamics is described by the following subsystem of (1)

ξ̇(t) = Jξ(q(t))u(t). (3)

The robot is equipped with a camera. Let bx ∈ R3 be the
position of a fixed feature point with respect to the robot
base frame and y(t) = [u(t), v(t)]T be the real-time position
of the feature point in the image. Let Te(t) ∈ R4×4 be
the homogenous transform matrix of the end-effector with
respect to the robot base frame, respectively, i.e.,

Te(t) =

[
R(t) ξ(t)
0 1

]
, (4)



where R(t) and ξ(t) are the rotation matrix and the trans-
lation vector from the robot base frame to the end-effector
frame. The observation model of the camera is given by:[

y(t)
1

]
=

1
cz(t)

MT−1
e (t)

[
bx
1

]
, (5)

where M ∈ R3×4 is the perspective projection matrix,
determined by the intrinsic and extrinsic parameters of the
camera, and cz(t) is the depth of the feature point satisfying

cz(t) = mT
3T

−1
e (t)

[
bx
1

]
(6)

where we use mT
i to denote the i-th row of M for i = 1, 2, 3.

To describe the dynamics of the image and the control
input, we take the time derivative of (5), which yields,

ẏ(t) =
1

cz(t)
A(t)q̇(t), (7)

where

A(t) =

[
mT

1 − u(t)mT
3

mT
2 − v(t)mT

3

] ∂

(
T−1
e (t)

[
bx
1

])
∂q

(8)

is called the depth-independent interaction matrix or the
image Jacobian matrix [32], and

∂

(
T−1
e (t)

[
bx
1

])
∂q

=
∂
(
RT(t)bx−RT(t)ξ(t)

)
∂q

= sk(RT(t)bx)

 0 0 −1
0 −1 0
−1 0 0

Jψ(q(t))

+ sk(RT(t)ξ(t))

 0 0 −1
0 −1 0
−1 0 0

Jψ(q(t)) +RT(t)Jξ(q(t))

Furthermore, we take the derivative of (6), yielding

cż(t) =

∂

(
mT

3T
−1
e (t)

[
bx
1

])
∂q

q̇(t) =: aT(t)q̇(t) (9)

where aT(t) is a vector determined by the camera parameters
and the joint angles of the manipulator.

However, in many situations, the perspective projection
matrix M is unknown due to the unavailable intrinsic and
extrinsic parameters of the camera. This is typically common
in scenarios where the position and the orientation of the
camera need to be adjusted within a certain range for a better
field of view before implementing the controller. Therefore,
we have to estimate M adaptively together with the control
law. Also, bx is also unavailable in most of the scenarios
when the camera is uncalibrated. Given the feature point in
the image y(t), the depth cz(t) as well as the transformation
matrix Te(t), to express (5) in a way of linear form of
parameters, we denote the perception projection matrix by
M =

[
Ω χ

]
, where Ω ∈ R3×3 and χ ∈ R3 is the left

matrix and the right vector, respectively. Then we re-write
(5) with (4) as

cz(t)

[
y(t)
1

]
= MT−1

e (t)

[
bx
1

]
=

[
Ω χ

] [R(t)bx−R(t)ξ(t)
1

]
= ΩR(t)bx−ΩR(t)ξ(t) + χ

= Φ(q(t))θp,

(10)

where θp ∈ R39 is the vector of parameters that decide both
M and bx, and Φ(q(t)) ∈ R3×39 is a matrix decided by the
motion of the end-effector. The reader is referred to [32] for
more details on the above property of matrix M.

Due to the uncalibrated camera, in what follows, we use
M̂(t), Â(t), â(t), bx̂(t) and θ̂p(t) to denote the estimated
value to M, A(t), a(t), bx and θp, respectively.

Furthermore, since the camera is adjusted within a certain
range, we make the following assumptions.

Assumption 1: All the unknown parameters of the camera
are bounded by known upper and lower bounds.

Based on the above assumption, we have θp ≤ θp ≤ θp,
where θp and θp are known.

Also, to achieve continuous kinematic control, we make
the following assumption based on the camera’s field of view.

Assumption 2: The feature point is in the field of view of
the camera all the time.

B. Safety & Control Barrier Function

In this paper, we only take into consideration the safety
of the end-effector in the workspace, i.e., the safety of ξ(t),
which is without loss of generality due to the fact we can
still consider the whole body of the robotic manipulator by
defining an augmented state incorporating its configuration.

Let XS ⊂ R3 be the set of all safe states. Then we define
the safety of manipulator as follows.

Definition 1 (Safety): System (3) is considered to be safe
if ξ(t) ∈ XS for all t ≥ t0.

To ensure the safety of system (3) over a suitable safe set,
we introduce the definition of forward invariant set.

Definition 2 (Forward Invariance): A set C ⊂ R3 is said
to be forward invariant for system (3) if for any ξ(t0) ∈ C,
we have ξ(t) ∈ C for any t ≥ t0.

In this paper, we aim to use a continuously differentiable
function h : R3 → R to characterize a safe set C that is
forward invariant for the system (3). To this end, given a
continuously differentiable function h : R3 → R, we focus
on the following sets

C = {ξ ∈ R3 : h(ξ) ≥ 0} (11a)

∂C = {ξ ∈ R3 : h(ξ) = 0} (11b)

Int(C) = {ξ ∈ R3 : h(ξ) > 0} (11c)

where C is the zero-superlevel of h, ∂C is the set boundary,
and Int(C) is the interior of set C. Then, we introduce the
standard control barrier function as follows, which guaran-
tees that its zero-superlevel set is a forward invariant set.



Definition 3 (Control Barrier Function): A continuously
differentiable function h : R3 → R defining a set C ⊂ R3

as in (11a) is said to be a control barrier function (CBF) for
system (3) on C if there exists a function α ∈ Ke∞ such that
for all ξ ∈ R3, we have

sup
u(t)∈Rn

∂h(ξ)

∂ξ
Jξ(q(t))u(t) ≥ −α(h(ξ)). (12)

Here, we claim that, the above condition can always be
satisfied by setting a suitable function α, due to the fact that
system (3) has relative degree 1, i.e., ∂h(ξ)

∂ξ Jξ(q(t)) ̸= 0,
and the control input u(t) can be chosen in Rn.

C. Problem Formulation

In general, the above standard CBF h : R3 → R is defined
over the workspace R3, whose construction requires both of
the exact positions of obstacles and the end-effector in the
robot base frame. However, despite the availability of the
end-effector’s position from the manipulator, the uncalibrated
camera makes it challenging to accurately determine the
position of the obstacles. Therefore, in this paper, we aim
to directly construct a CBF over the image space together
with the depth that is available from an uncalibrated RGB-
D camera. Apart from the safety, due to the uncalibrated
camera, it is also necessary to design a kinematic controller
based on the image and the depth to achieve some goals for
the manipulator as a nominal controller. In what follows, we
provide the formal description for both the above problems.

For the nominal kinematic controller, we aim to accom-
plish the goal of manipulator by designing a controller that
guarantees the position of the feature point on the image
converging to a desired position. Let yd be the desired
position of the feature point on image and define the image
error of the feature point as

∆y(t) = y(t)− yd. (13)

However, given the uncalibrated camera, it is necessary to
adaptively estimate the unknown parameters based on the
image of the feature point y(tj) with depth cz(tj) and the
available transformation matrix Te(tj) in the history, where
tj ≤ t is the sampling time instant. In general, to estimate
the perception projection matrix M and the position of a
feature point bx, there are 39 parameters required in (10),
which requires at least 20 images with y(tj) and cz(tj) for
j = 1, . . . , 20.

Then, we formulate the vision servoing control problem
with an uncalibrated camera as follows.

Problem 1 (Adaptive Vision Servoing Kinematic Control):
Consider the manipulator described by system (1) with an
uncalibrated camera satisfying Assumption 1 and 2. Design
a nominal controller of the following form

û(t) = ρ(y(t),yd, θ̂p(t)), (14a)
˙̂
θp(t) = ϱ(θ̂p(t), {y(tj), cz(tj),Te(tj)}tj≤t), (14b)

such that

lim
t→∞

∆y(t) = 0, lim
t→∞

θ̂p(t) = lθp, (15)

where l is a constant decided by one component of M, and
ρ and ϱ are sufficiently smooth functions to be designed.

Remark 1: In theory, we are only able to estimate the
matrix M up to a scale due to the following fact[

y(t)
1

]
=

lM

lcz(t)
T−1
e (t)

[
bx
1

]
. (16)

Therefore, it is sufficient to fix one component of θp as 1
and then θ̂p(t) is expected to converge to θp up to scale l.

With the nominal kinematic controller in (14), we now
take the safety into consideration. The safe vision servoing
control of manipulators is defined as follows.

Problem 2 (Safe Vision Servoing Kinematic Control):
Consider a workspace of the manipulator in R3 where there
are obstacles O⊂R3 that are unknown to the manipulator.
The safe region avoiding the obstacles is captured by the
safety set XS = R3\O. The kinematics of the manipulator
is described by (1) with input (2). The obstacles and the
end-effector are sensed by an uncalibrated camera satisfying
Assumption 1 and 2 through (5) as yO(t) with czO(t) and
yξ, respectively. Let θ̂O(t) be the estimated parameter by
choosing the obstacle as the feature point. Design a control
barrier function in the following form of

h(t) = h(yO(t),yξ,
czO(t)) (17)

with a constraint condition

φ(h(yO(t),yξ,
czO(t)), θ̂O(t),u(t)) ≥ 0 (18)

such that the zero-superlevel defined by h(t) is a safety set,
i.e.,

C(t) = {ξ(t) ∈ R3 : h(t) ≥ 0} ⊆ XS (19)

and the zero-superlevel set of h(t) defined in is forward
invariant for system (3), i.e.,

ξ(t0) ∈ C(t0) ⇒ ξ(t) ∈ C(t). (20)

where φ is a sufficiently smooth function to be designed.
Remark 2: Here, we slightly abuse the notation yO(t) and

czO(t) to describe the positions of the obstacles on the image
and their depths. In fact, since the obstacles O are objects
with shapes and sizes, in the image space, yO(t) is generally
a region denoting the pixels for the obstacles, instead of
one single pixel. Also, each pixel in the region yO(t) is
coupled with a depth for which we use czO(t) to denote
all depths returned by the RGB-D camera. Furthermore, the
camera is fixed on the end of the manipulator (after necessary
adjustment), so the end-effector position on the image should
be a constant yξ.

With the above two problems being solved, we can eas-
ily obtain a safe vision servoing kinematic controller that
achieves the specific task and avoids obstacles by solving a
quadratic programming with the nominal controller û(t) and
the visual CBF h(t), which will be formally presented in the
following sections.



III. ADAPTIVE VISUAL KINEMATIC CONTROLLER

In this section, we propose a kinematic controller together
with an adaptive parameter estimator that achieves both of
the convergence of the feature point to a desired position
on the image and the convergence of camera parameters
based on the image and depth information returned by the
uncalibrated camera.

Inspired by [32], we first introduce the following Frobe-
nius norm of errors to evaluate the time-varying error of the
estimated matrix M̂ and the estimated position of the feature
point bx̂, i.e.,

ep(t; tj) =
cz(tj)y(tj)−

[
m̂T

1(t)
m̂T

2(t)

]
T−1
e (tj)

[
bx̂(t)
1

]
. (21)

From (5), we have

cz(tj)y(tj)−
[
mT

1

mT
2

]
T−1
e (tj)

[
bx
1

]
= 0. (22)

Combining (21) and (22), we have

ep(t; tj) =

[
mT

1

mT
2

]
T−1
e (tj)

[
bx
1

]
−
[
m̂T

1(t)
m̂T

2(t)

]
T−1
e (tj)

[
bx̂(t)
1

]
.

From (10), we have[
ep(t; tj)

1

]
= Φ(q(tj))(θp − θ̂p(t)). (23)

By denoting ∆θp = θ̂p(t)− θp, it is easy to find a constant
matrix Wp(tj) ∈ R2×39 such that

ep(t; tj) = Wp(tj)∆θp(t). (24)

Given an estimated M̂(t), we can compute the estimated
depth-independent interaction matrix Â(t) by replacing M
by M̂(t) in (8). Next, we analyze the property of the error
of the estimated Â(t), i.e., Â(t)−A(t).

Based on the result of [32], the depth-independent interac-
tion matrix A(t) has the following property: for any vector
v ∈ Rn, the product A(t)v can be written as a linear form
of the unknown parameters θp with a constant wp ∈ R2, i.e.,

A(t)v = Y(v,y(t))θp +wp (25)

where Y(v,y(t)) ∈ R2×n is a regressor matrix that does
not depend on the parameters. Therefore, we have

(Â(t)−A(t))q̇(t) = Yp(q(t),y(t))∆θp(t) (26)

With the above results, we propose the kinematic con-
troller and the adaptive estimator as follows:

û(t) = −ÂT(t)B∆y(t) (27a)
˙̂
θp(t) = − 1

cz(t)
Γ−1YT

p(q(t),y(t))B∆y(t)

− Γ−1
k∑
j=1

WT
p(tj)Kep(tj ; t) (27b)

where k ≥ 20 is the sampling times, and B ∈ R2×2, Γ ∈
R39×39 and K∈R2×2 are positive definite matrices.

The intuition behind the design of the above control law is
explained as follows. In the controller, we use ÂT(t)B∆y(t)

to control with the image error feedback. Note that the
true value of A(t) is not involved and the estimated Â(t)
can be easily obtained according to the real-time estimated
parameters θ̂p(t). In the design of the estimator, we use
the first term to cancel the regressor term introduced by
the estimation error Â(t) −A(t) in the controller, and use
the second term to ensure the convergence of the estimated
parameter θ̂p(t) by the feedback with the estimation error
captured by ep(t; tj).

Then, the convergence of the above control law is sum-
marized by the following theorem.

Theorem 1: If Assumptions 1 and 2 are satisfied, under
the controller (27), the image error ∆y(t) of system (1)
converges to zero while the estimated parameters converge
to the real values up to a scale, i.e.,

lim
t→∞

∆y(t) = 0, lim
t→∞

θ̂p(t) = lθp. (28)
Due to the page limit, all the omitted proofs can be found
at https://jnzhaooo.github.io/files/VSCBF.pdf.

Remark 3: Compared to [32], we design the kinematic
controller instead of the control law on the level of dynamics
of the manipulator. As a matter of fact, for most of the
manipulators, since the low-level dynamic control of manip-
ulators has been well-designed and encapsulated, making it
generally impossible to directly perform the dynamic control.
Furthermore, compared to [32], we have incorporated more
depth information in our controller design. This is because
the depth can be easily obtained from an RGB-D camera.
Moreover, unlike the work in [32], in addition to convergence
tasks, we also need to consider obstacle avoidance. There-
fore, depth information is essential for both the controller
design and the following design of visual servoing CBF.

IV. VISUAL SERVOING CONTROL BARRIER FUNCTION &
SAFE VISUAL SERVOING KINEMATIC CONTROL

In this section, we first introduce the control barrier
function defined in the image-depth space. Then, we propose
the safe visual servoing controller by solving a quadratic
programming (QP) optimization problem.

A. Visual Servoing Control Barrier Function

In this subsection, we first introduce the general form of
the visual servoing CBF defined over the image-depth space,
and then design a specific CBF based on the image position
of the obstacles yO(t) together with the depths czO(t) and
the image position of the end-effector yξ, which satisfies all
the requirement of the visual servoing CBF.

In general, there are multiple obstacles in the workspace
and we use yO(t) and czO(t) to describe the pixels and the
corresponding depths of all the obstacles. However, for the
sake of writing convenience, in what follows, we assume that
there is only one obstacle. We claim that such assumption
is without loss of generality since our framework can be
extended to the arbitrary number of obstacles.

Furthermore, with a slight abuse of the notation, in what
follows, we use yO(t) and czO(t) to denote the center
coordinates of the pixels of the obstacle and the minimum
depth of the obstacle at time t, respectively.



Now, we introduce the general visual servoing CBF can-
didate in the image and depth space in the following form
of:

h(yO(t),yξ,
czO(t)) = hy(yO(t),yξ) + hz(

czO(t)). (29)

Then, we define the safety set in the image and depth
space induced by h(yO(t),yξ,

czO(t)) as

S(t) = {(yO(t),
cz(t)) : h(yO(t),yξ,

czO(t)) ≥ 0}. (30)

Also, we equivalently define the safety set in the workspace
as

C(t) = {ξ(t) ∈ R3 : h(yO(t),yξ,
czO(t)) ≥ 0}. (31)

Naturally, we have

((yO(t),
cz(t))) ∈ S(t) ⇒ ξ(t) ∈ C(t). (32)

Intuitively, we use hy(yO(t),yξ) to capture the collision
avoidance on the image, where hy(yO(t),yξ) > 0 indicates
that the end-effector is safe on the image at time t. However,
hy(yO(t),yξ) ≤ 0 does not necessarily mean that the end-
effector collides with the obstacle in the workspace. To this
end, we use hz(

czO(t)) to capture the safety in the space
of depth, for which hz(

czO(t)) > 0 indicates that the
distance between the end-effector and the obstacle is safe
at time t. The reason why we use both hy(yO(t),yξ) and
hz(

czO(t)) to capture the safety, instead of using hz(
czO(t))

only lies in that the existence of hy(yO(t),yξ) also reduces
the conservativeness of the CBF. That is, if the condition
hy(yO(t),yξ) > 0 allows that the distance between the end-
effector and the obstacle is not necessarily too large.

With the above form of visual servoing CBF candidate,
we need to form a constraint condition on the derivative of
h(yO(t),yξ,

czO(t)) with the control input u(t) involved. It
is obvious that the dynamics between yO(t) and u(t) satis-
fies (7) as well. However, since the camera is uncalibrated,
the depth-independent interaction matrix with respect to the
object AO(t) is unavailable. Similar to parameter estimation
with respect to the feature point in Section III, we denote by
θO the parameter that is related to the obstacle, which also
satisfies

θO ≤ θO ≤ θO (33)

based on Assumption 1. Then, we propose the following
estimation law for θO:

˙̂
θO(t) = −Γ−1

k∑
j=1

WT
O(tj)KeO(tj ; t), (34)

where the initial condition satisfies θO ≤ θ̂O(t0) ≤ θO. By
a similar stability analysis with Appendix I, we can easily
conclude that θ̂O(t) → lθO as t → ∞. We denote by ÂO(t)
and âO(t) the estimated AO(t) and aO(t) from the estimated
parameter θ̂O(t), respectively. Furthermore, similar to (26),
the estimation errors ÂO(t) − AO(t) and âO(t) − aO(t)
satisfy

(ÂO(t)−AO(t))q̇(t) = YO(q(t),y(t))∆θO(t), (35a)
(âO(t)− aO(t))q̇(t) = Yz(q(t),y(t))∆θO(t), (35b)

where YO ∈ R2×n and YT
z ∈ Rn are a regression matrix

and a regression vector, respectively.
Now, we propose the formal definition of the visual

servoing CBF with the constraint condition as follows:
Definition 4 (Visual Servoing CBF): A continously dif-

ferentiable function h(yO(t),yξ,
czO(t)) in the form of (29)

is a visual control barrier function (VS-CBF) for system
(3) if there exists a function α ∈ Ke∞ such that for all
(yO(t),

cz(t)) ∈ S(t), the following condition holds

sup
u(t)∈Rn

[(
∂hy

∂yO

1
czO(t)

ÂO(t) +
∂hz

∂ czO(t)
âT
O(t)

)
u(t)

−B(yO(t),yξ,
czO(t))

]
≥−α(h(yO(t),yξ,

czO(t))),

(36)

where ÂO(t) and â(t) are computed from θ̂O(t) which is
updated according to the estimation law (34) and

B(yO(t),yξ,
czO(t)) = (37)(

1
czO(t)

∥∥∥∥ ∂hy

∂yO

∥∥∥∥ ∥YO∥+
∥∥∥∥ ∂hz
∂ czO(t)

∥∥∥∥ ∥Yz∥
)∥∥θO − θO

∥∥ .
Now, we establish the main result of the visual CBF as

the following theorem.
Theorem 2: Consider the system (3) driven by a controller

u(t) satisfying (36). Given the safety sets S(t) and C(t)
defined by the VS-CBF h(yO(t),yξ,

czO(t)) in (30) and in
(31), respectively, under Assumption 1, we have

(yO(t0),
cz(t0)) ∈ S(t0) ⇒ (yO(t),

cz(t)) ∈ S(t). (38)

That is, S(t) is forward invariant. Equivalently, we have

ξ(t0) ∈ C(t0) ⇒ ξ(t) ∈ C(t). (39)
Next, we aim to design a specific control barrier function

that satisfies the condition (36) and ensures that

C(t) ⊆ XS . (40)

Here we propose a simple VS-CBF candidate as follows:

h(t) = λ
(
(yO(t)− yξ)

2 − r2O
)
+ (czO(t)− ds) (41)

where rO ∈ R+ is an over-approximation for the radius of
the obstacle pixels on the image, ds ∈ R+ is a safety distance
we set based on the size of the end-effector, and λ ∈ R+ is
a parameter to be adjusted for making trade-off between the
image safety and the distance safety.

First, we claim that the above h(t) is a VS-CBF, since
we can always find a sufficiently large control input u(t) to
satisfy the condition (36). Then we show that the VS-CBF
ensures the safety of the end-effector in the workspace by
the following result.

Proposition 1: The zero-superlevel set C defined by (41)
in (31) satisfies

C(t) ⊆ XS . (42)
With the above results, we have the following corollary.

Corollary 1: Consider the system (3) driven by a con-
troller u(t) satisfying (36) defined by a VS-CBF in (41).
Under Assumption 1, the end-effector can always keep in
the safe states, i.e.,

ξ(t) ∈ XS , ∀t ≥ t0. (43)



Fig. 1. Experiment Setting

B. QP-based Safe Visual Servoing Control

With the above results, we can obtain a safe kinematic
controller that achieves the specific objective and avoids the
collision by solving the following quadratic programming
(QP) optimization problem:

min
u(t)∈Rn

∥u(t)− û(t)∥, (44a)

subject to Condition (36), (44b)

where û(t) is computed according to (27) and the VS-CBF
h(yO(t),yξ,

czO(t)) is defined in (41).
Now, we summarize the main result of this paper as the

following theorem whose correctness has been supported by
all the above results.

Theorem 3: Under Assumption 1 and 2, the system (1)
driven by the controller obtained in (44) with the nominal
controller in (27) and the VS-CBF (41) satisfies

lim
t→∞

∆y(t) = 0, ξ(t) ∈ XS , ∀t ≥ t0. (45)
Remark 4: In this paper, we use the simple VS-CBF in

the form of (41) by over-approximating each obstacle as a
circle. In fact, there are still many different approaches in
the literature for designing a new hy(yO(t),yξ) to achieve
the collision avoidance in the image space, which has been
already reduced to a standard CBF design problem.

Remark 5: Compared to the standard CBF, the VS-CBF
we propose in Definition 4 does not depend on the coor-
dinates of both the feature point and the obstacles in the
workspace. Moreover, the condition (36) is also updated only
based on the information sensed by the uncalibrated camera.
Therefore, the proposed CBF-based safe vision servoing
control can be implemented in a fully vision-based manner.

Remark 6: In the design of condition (36), we utilize the
Assumption 1 to find a fixed bound on the estimation error,
i.e., ∥θ̂O(t)−θO∥ ≤ ∥θO−θO∥. In fact, we can also build a
time-varying adaptive bound for the estimation error by using
the error eO(tj ; t) and the constant WO(tj) satisfying (24),
which may reduce more conservativeness of the constraint.
We leave this as a direction for the future work.

V. EXPERIMENTS

In this section, we present the implementation of the
proposed CBF-based safe visual servoing control on a UR3
manipulator with an Eye-in-Hand RealSense D435i camera.

Fig. 2. The Evolution of VS-CBF hi(t)

The experimental setting is shown in Figure 1. The ma-
nipulator is tasked with grasping an object and placing it to a
desired position. The position of the target object and desired
position are denoted as two feature points. Furthermore,
there are multiple obstacles in the workspace. For the better
recognition of the camera, we use the QR codes to denote the
positions of all the obstacles and the feature points. For the
nominal kinematic controller (27), we set the desired pixels
for the grasping and the placing as yd1 = [461, 460]T and
yd2 = [359, 258]T, respectively, and design the parameters
as B = Diag(5× 10−7, 5× 10−7), K = Diag(0.004, 0.004),
Γ = 18000I39×39. Also, for the VS-CBF (41), we set
λ = 1×10−5 and ds = 0.08 while yO(t), rO are detected in
real time on the image and cziO(t) is obtained in real time by
the camera. To implement the VS-CBF (41) for the multiple
obstacles, it is sufficient to consider the multiple VS-CBF,
i.e.,

hi(t) = λ
(
(yiO(t)− yξ)

2 − r2O
)
+ (cziO(t)− ds), (46)

where yiO(t) and cziO(t) denote the center and the depth of
the i-th obstacle sensed by the camera.

The evolution of each hi(t) is given in Figure 2. Note that
hi(t) can be computed only when the obstacles are sensed
by the camera. We observe that the VS-CBF keeps hi(t) ≥ 0
at all t ≥ t0, which effectively ensures the safety of the end-
effector in the workspace. The video of the experiments is
available at https://youtu.be/PvpHBNnDDbE.

VI. CONCLUSION

In this paper, we solve the safe visual servoing control
problem of robotic manipulators with uncalibrated camera by
designing a vision-based kinematic controller and proposing
the VS-CBF based on the image and depth data sensed by
the camera, which provides the provable safety guarantee
for the end-effector of the manipulators. We validate the
effectiveness of the proposed approach by the experiments
conducted on UR3 robots. For the future work, we aim
to improve the definition of VS-CBF for manipulators by
relaxing the assumption of the bounded camera parameters
based on a more detailed analysis of the adaptive estimation
error. A learning-based CBF construction approach for ma-
nipulators based on the image and depth data will also be
under investigation in the future.
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APPENDIX I
PROOF OF THEOREM 1

Consider a Lyapunov function

V (t) =
1

2
∆yT(t)B∆y(t) +

1

2
∆θT

p(t)Γ∆θp(t) (47)

Taking the time derivative along the trajectory of system
consisting of (7), (9) and (27) yields (50).

Since V̇ (t) = 0 implies ∆y(t) = 0 and ep(tj ; t) = 0 for
each j = 1, . . . , k, by LaSalle’s Invariance Principle [17],
we know that

lim
t→∞

∆y(t) = 0, lim
t→∞

ep(tj ; t) = 0 (48)

Furthermore, based on (24) and the result of [32, Propositions
3 & 4], we know that, if k ≥ 20, then we have

ep(tj ; t) = 0 ⇒ θ̂p(t) = lθp (49)

which implies lim
t→∞

θ̂p(t)= lθp. The proof is thus completed.
APPENDIX II

PROOF OF THEOREM 2
Taking the time derivative of h(yO(t),yξ,

czO(t)) in
(29) along the trajectories of (7) and (9) yields (52). Since

Assumption 1 is satisfied and the initial condition for the
estimation law (34) is set as θO ≤ θ̂O(t0) ≤ θO, by the
convergence of the estimation, we have

∥∆θO(t)∥ = ∥θ̂O(t)− θO∥ ≤ ∥θO − θO∥. (51)

Under the condition (36), we know that, there exists u(t) ∈
Rn such that (53) holds. By the comparison lemma [17], we
know that h(yO(t),yξ,

czO(t)) ≥ 0 for all t ≥ t0, which
means both S(t) and C(t) defined by h(yO(t),yξ,

czO(t))
is forward invariant. The proof is thus completed.

APPENDIX III
PROOF OF PROPOSITION 1

We prove this result by contradiction. Suppose C(t) ̸⊆ XS ,
which means that there exists ξ′(t) ∈ C(t) such that

(yO(t)− yξ′)
2 − r2O + λ(czO(t)− ds) ≥ 0 (54)

but ξ′(t) /∈ XS . Since ξ′(t) /∈ XS , we know that, the end-
effector collides with the obstacle at time t. Then we have
(yO(t)−yξ′)

2 ≤ r2O and czO(t)−ds < 0, which contradicts
with (54). The proof is thus completed.

V̇ (t) = − 1
cz(t)

∆yT(t)B(A− Â)q̇(t)− 1
cz(t)

∆yT(t)BÂÂTB∆y(t)− 1
cz(t)

∆θT
p(t)Y

T
pB∆y(t)−∆θT

p(t)

k∑
j=1

WT
pKep(tj ; t)

(26)
=

1
cz(t)

∆yT(t)BYp∆θp(t)−
1

cz(t)
∆yT(t)BÂÂTBT∆y(t)− 1

cz(t)
∆θT

p(t)Y
T
pB∆y(t)−∆θT

p(t)

k∑
j=1

WT
pKep(tj ; t)

(24)
= − 1

cz(t)
∆yT(t)BÂÂTBT∆y(t)−

k∑
j=1

eT
p(tj ; t)Kep(tj ; t) ≤ 0 (50)

ḣ(t) =
∂hy

∂yO

1
cz(t)

(
AO(t)− ÂO(t)

)
u(t) +

∂hz
∂ czO(t)

(aT
O(t)− âT

O(t))u(t) +

(
∂hy

∂yO

1
czO(t)

ÂO(t) +
∂hz

∂ czO(t)
âT
O(t)

)
u(t)

(35)
= −

(
∂hy

∂yO

1
cz(t)

YO∆θO(t) +
∂hz

∂ czO(t)
Yz∆θO(t)

)
+

(
∂hy

∂yO

1
czO(t)

ÂO(t) +
∂hz

∂ czO(t)
âT
O(t)

)
u(t)

≥ −
(

1
cz(t)

∥∥∥∥ ∂hy

∂yO

∥∥∥∥ ∥YO∥+
∥∥∥∥ ∂hz
∂ czO(t)

∥∥∥∥ ∥Yz∥
)
∥∆θO(t)∥+

(
∂hy

∂yO

1
czO(t)

ÂO(t) +
∂hz

∂ czO(t)
âT
O(t)

)
u(t) (52)

ḣ(t) ≥ −B(yO(t),yξ,
czO(t)) +

(
∂hy

∂yO

1
czO(t)

ÂO(t) +
∂hz

∂ czO(t)
âT
O(t)

)
u(t)≥−α(h(yO(t),yξ,

czO(t))) (53)


