
Regret-Optimal Supervisory Control of Partially-Known
Discrete-Event Systems

Jianing Zhao†, Bohan Cui†, Dimos V. Dimarogonas, Rupak Majumdar and Xiang Yin

Abstract— This paper addresses a novel optimal supervi-
sory control problem for reachability tasks in partially-known
discrete-event systems (DES). We consider a setting where the
supervisor lacks prior knowledge of feasible events in certain
states and must discover this information by visiting them.
To assess performance in this context, we study regret as a
metric that quantifies the difference between the actual cost
incurred and the optimal cost achievable with full knowledge.
We formalize this problem and propose the algorithm to
compute an optimal supervisor that guarantees reachability
while minimizing regret. Our results demonstrate that regret
serves as a meaningful performance measure for supervisory
control in partially-known DES, and our method is both correct
and effective in practice.

I. INTRODUCTION

Discrete-Event Systems (DES) are an important class of
systems with discrete state spaces and event-triggered dy-
namics [1]. They play an essential role in modeling, analysis
and control of high-level behaviors for engineering cyber-
physical systems such as manufacturing systems, embedded
software, and communication networks. In the context of
DES, one of the central problems is how to enforce the
closed-loop properties of the system. Supervisory Control
Theory (SCT), initiated by Ramadge and Wonham [2], is a
powerful formal framework widely used for the synthesis of
DES controllers under some desired specifications, such as
safety, liveness and nonblockingness; see, e.g., the textbook
[3] and some recent works [4]–[10].

One important branch in SCT is the synthesis of optimal
supervisors with respect to some performance measures.
This problem, known as the optimal supervisory control
problem, has been widely investigated in the literature; see,
e.g., [11]–[15]. Particularly, in [14], the authors proposed
an optimal supervisory control framework considering both
the occurrence cost and disablement cost. The supervisor’s
objective is to reach marked states optimally in terms of the
worst-case total accumulated cost. Following this framework,
in [11], a liveness task and the worst-case average cost
are considered. In [16], the authors further extended the

This work was supported by the National Natural Science Foundation of
China (62061136004, 62173226, 61803259).

J. Zhao, B. Cui and X. Yin are with the Department of Automa-
tion, Shanghai Jiao Tong University, Shanghai 200240, China. E-mail:
{jnzhao,bohan cui,yinxiang}@sjtu.edu.cn.

D. V. Dimarogonas is with the School of Electrical Engineering and
Computer Science, KTH Royal Institute of Technology, Stockholm SE
10044, Sweden. E-mail: dimos@kth.se.

R. Majumdar is with the Max-Planck Institute for Software Systems,
Kaiserslautern 67663, Germany. E-mail: rupak@mpi-sws.org.

† indicates the equal contribution.

4

2

6

5

7

1

3

1

2

3

4 5

6

7

(a) Robot Workspace

1

4 5

3 6

2 7

c2

u1

c2
u1

c2

c2c1

c2
u2

(b) PK-DES

Fig. 1. A motivating example, where a robot needs to reach region 6 from
region 0 with partially-known environment information.

specification to the cyclic task in which the supervisor is
required to visit marked states infinitely.

In most of existing works in SCT, uncertainties are mod-
eled as uncontrollable events. These models, while suitable
for describing disturbances, fall short in capturing the sce-
narios where the system structure is inherently unknown and
the supervisor is required to actively explore the system to
uncover the actual configuration. Relying solely on the worst-
case analysis may lead to a highly conservative supervisor. To
be more specific, let us consider a simple motivating example
where a robot moves in a partially-known workspace as
shown in Fig 1(a), the corresponding transition model is as
shown in Fig 1(b). We assume that the robot knows the ter-
rain and the bridge between regions 6 and 7, but is uncertain
about the bridge between regions 4 and 5 due to a cloud.
The goal is to reach region 6 from region 1 with minimal
energy cost. However, traversing mountainous terrain incurs
significantly higher energy consumption compared to the
plains. A worst-case strategy follows path 1→ 2→ 7→ 6 to
prevent unnecessary backtracking. However, this may lead to
a heavy regret if a bridge does exist at region 4, as the robot
would have missed a shortcut. A more adaptive approach
is to first check region 4. If a bridge is present, the robot
takes the shortcut and saves energy; otherwise, it backtracks
to 1. While this strategy may have a slightly higher worst-
case cost, it renders much less regret and takes the potential
advantage of exploring the unknown regions.

The above example illustrates that even in a fully-
controllable setting, worst-case performance may not always
be suitable for evaluating a planning strategy. A systematic
approach is needed to quantitatively balance the trade-off
between exploration and conservatism. Motivated by this,

we formulate and solve a novel optimal supervisory con-
trol problem by considering scenarios where the supervisor
operates in a partially-known DES: the supervisor knows
all system states but lacks prior information about feasible
transitions from certain states unless explored. Different from
nondeterministic DES, where outcomes are random and may
vary even under identical conditions, a partially-known DES
involves initial uncertainty about the system’s structure but
remains deterministic.

Building upon the above setting, the main results of this
paper are summarized as follows: i) We propose a formal
model for partially-known DES that encompasses all possible
actual environments. Building on this model, we define the
evolution of the supervisor’s knowledge within the partially-
known DES and formulate the regret-optimal supervisory
control problem for which both the reachability specification
and the regret evaluation are introduced; ii) We define a novel
tripartite transition system to capture all potential knowledge
evolution paths under different control decisions and actual
environments; iii) We develop a game-theoretical approach
to solve the problem, which is divided into two parts: the first
focuses on deriving the optimal micro-strategies for one layer
of exploration, while the second designs a macro-strategy
across different layers of exploration. By integrating these
micro- and macro-strategies, we obtain an optimal solution
that minimizes regret.

Our work is closely related to graph games with quanti-
tative objectives [17], [18], particularly the regret minimiza-
tion problem [19]–[22]. However, their setting assumes the
environment-player’s strategy is unrestricted, allowing it to
change decisions freely each time it revisits the same state.
This assumption does not align with the partially-known
environment scenario considered in our work, where the
environment is fixed and the environment-player must act
consistently when revisiting the same state. In particular, one
of our previous works [22] started the study of partially-
known environment for temporal logic specification. How-
ever, only the path planning problem is solved in [22] and
the effect of uncontrollable events, which makes the solution
algorithm more complicated, has not been investigated.

II. SUPERVISORY CONTROL OF FULLY-KNOWN DES

A. System Model

Let Σ be a finite set of events. A string is a finite sequence
of events and we denote by Σ∗ the set of all strings over Σ
including the empty string ϵ. For integer n, we denote by Σn

the set of strings with length n. For string s ∈ Σ∗, the length
of s is denoted by |s| with |ϵ| = 0. A language L ⊆ Σ∗ is
a set of strings. The prefix-closure of L is denote by L̄, i.e.,
L̄ = {u ∈ Σ∗ : ∃v ∈ Σ∗ s.t. uv ∈ L}.

We consider a fully-known discrete-event system modeled
by a deterministic finite-state automaton (DFA)

G = (X,Σ, δG, x0, Xm)

where X is the finite set of states, Σ is the finite set of
events, δG : X × Σ → X is the partial transition function,
x0 ∈ X is the initial state, and Xm ⊆ X is the set of marked

states. The transition function δG can also be extended to δG :
X × Σ∗ → X in the usual manner. The language generated
by G from state x is defined by L(G, x) = {s ∈ Σ∗ :
δG(x, s)!}, where “!” means “is defined”. We also define
L(G,Q) :=

⋃
x∈Q L(G, x) as the language generated from

a set of states Q ⊆ X , define the language generated by
G is L(G) := L(G, x0), and the language marked by G is
Lm(G) = {s ∈ L(G) : δG(s) ∈ Xm}. For any s ∈ L(G),
we write δG(x0, s) simply as δG(s). For any x ∈ X , we
define ΛG(x) = {σ ∈ Σ : δG(x, σ)!} as the set of active
events at x. For any s ∈ L(G), we also write ΛG(δG(s)) as
ΛG(s) for simplicity.

In the supervisory control framework, a supervisor can
restrict the behavior of the system G by dynamically dis-
abling/enabling some system events. In this setting, the event
set Σ is partitioned as Σ = Σc∪̇Σuc, where Σc is the set
of controllable events and Σuc is the set of uncontrollable
events. A control decision γ ∈ 2Σ is said to be admissible
if Σuc ⊆ γ, namely, uncontrollable events can never be
disabled. Particularly, in this paper, we consider the control
decisions in which at most one controllable event is included.
This setting is without loss of generality since it does not
influence the controllability of the system. We define

Γ =
{
γ ∈ 2Σ : Σuc ⊆ γ ∧ |γ \ Σuc| ≤ 1

}
as the set of admissible control decisions. Then, a supervisor
is a mapping

S : L(G)→ Γ (1)

We denote by Ψ(G) the set of all supervisors in G. Moreover,
we use the notation S/G to represent the controlled system
and the language generated by S/G, denoted by L(S/G), is
defined recursively in the following manners:

i) ϵ ∈ L(S/G); and
ii) for any s ∈ Σ∗, σ ∈ Σ we have sσ ∈ L(S/G) iff

sσ ∈ L(G), s ∈ L(S/G), and σ ∈ S(s).
The language marked by S/G is denoted by Lm(S/G) =
L(S/G) ∩ Lm(G).

In this paper, we aim to synthesis a supervisor enforcing
reachability objective, which requires that the controlled
DES will eventually visit the marked states, i.e.,

∀s ∈ L(S/G),∃n ∈ N,∀t ∈ L(S/G)/s :

|t| ≥ n⇒ {st} ∩ Lm(G) ̸= ∅
(2)

We define ΨW (G) = {S ∈ Ψ(G) : S satisfies (2)} as the
set of all winning supervisors for the reachability.

In this paper, we consider the optimal supervisory control
in a quantitative manner. To this end, for each event, we
define the cost function w : Σ → R≥0 describing the cost
incurred whenever the DES generates an event. Given a
finite string t = σ1 · · ·σn ∈ L(G), we define cost(t) =∑n

i=1 w(σi) as the total cost along the string s. For a string
s ∈ Lm(G), we define its cost as the total cost when it first
reaches the set of marked states Xm, i.e.,

cost(s) = cost(t),

t ∈ {s} ∩ Lm(G) ∧ t′ /∈ Lm(G),∀t′ ∈ {t}\{t}
(3)

Algorithm 1: Min-Max Game (SolveMinMax)
Input: A BTS B with the set of marked states Xm

and a cost function wB
Output: Optimal strategy π⋆ :QX→QY and the

optimal minmax value minmax
1 foreach x ∈ QX do
2 if x ∈ Xm then
3 Val(0)(x)← 0 and π(0)(x)← ΛG(x) ∪ Σuc

4 else
5 Val(0)(x)←∞

6 repeat
7 foreach y ∈ QY do
8 Val(k+1)(y)← max

x′∈Succ(y)

(
Val(k)(x′) + wB(y, x

′)
)

9 foreach x ∈ QX do
10 Val(k+1)(x)← min

y∈Succ(x)

(
Val(k)(y) + wB(x, y)

)
11 π(k+1)(x) ← argmin

y∈Succ(x)

(
Val(k)(y) + wB(x, y)

)
12 k ← k + 1

13 until ∀z ∈ QX ∪QY : Val(k+1)(z) = Val(k)(z);
14 return π(k),Val(k)(x0)

Given a winning supervisor S ∈ ΨW (G), we define the cost
of the controlled system S/G as

cost(S/G) = max
s∈Lm(S/G)

cost(s) (4)

Then, we aim to synthesize an optimal supervisor S⋆ that
minimizes the cost with the reachability objective, i.e.,

cost(S⋆/G) ≤ cost(S/G), ∀S ∈ ΨW (G) (5)

B. Controller Synthesis

In this subsection, we review the optimal supervisory
control synthesis algorithm for reachability based on the
following structure of bipartite transition system [23].

Definition 1 (Bipartite Transition System): Given system
G, we construct its bipartite transition system (BTS) as

B = (QX , QY , x0, hXY , hY X ,Σ,Γ)

where
• QX = X ∪ {d} is the set of X-states, where d is the

deadlocked state;
• QY = X × Γ is the set of Y -states;
• x0 ∈ QY is the initial X-state;
• hXY : QX × Γ → QY is the transition function from

X-states to Y -states define by: for any x ∈ QX , γ ∈ Γ
and y = (x, γ) ∈ QY , y = hXY (x, γ);

• hY X :QY ×(Σ ∪ {ϵ})→QX is the transition function
from Y -states to X-states define by: for any y=(x, γ)∈
QY , we have

– if ΛG(x) ∩ γ ̸= ∅, we define

hY X(y, σ) = δ(x, σ), ∀σ ∈ ΛG(x) ∩ γ (6)

– if ΛG(x) ∩ γ = ∅, we define

hY X(y, ϵ) = d (7)

• Σ is the set of events in G;
• Γ is the set of admissible control decisions in G.
Here we note that the marked states in G are implicitly

included in X-states of B, i.e., Xm ⊂QX . For the sake of
writing convenience, in this paper, we use Succ(·) to denote
the successor-states of a given state in the graph, i.e.,

• for each x ∈ QX , we have

Succ(x) = {hXY (x, γ) : γ ∈ Γ}
• for each x ∈ QY , we have

Succ(x) = {hY X(y, σ) : σ ∈ Σ ∪ {ϵ} s.t. hY X(y, σ)!}
Hereafter, the detailed definition of Succ(·) for other kinds
of graphs will be omitted.

To capture the optimality, we define a cost function for B
as follows: for each x ∈ QX\{d} and each y ∈ hXY (x),
we define wB(x, y) = 0; for each y ∈ QY and each x′ =
hY X(y, σ) ∈ hY X(y), we define wB(y, x

′) = w(σ).
Then the optimal supervisor can be obtained by solving a

standard min-max reachability game [24], i.e., Algorithm 1.
Given the optimal strategy π⋆ returned by Algorithm 1, in

execution, the optimal supervisor S⋆ can work as follows:
at each instant, S⋆ remembers the current X-state x and
pick the decision γ such that hXY (x, γ) = π⋆(x). Then we
update the current to Y -state according to γ and wait for the
next event to occur. After that, we update the current state
again to X-state and so forth.

III. PARTIALLY-KNOWN DES

Although uncertainties in environments can be captured
by the uncontrollable events in the full-known DES, there
are also scenarios where there are initially unknown states
in the system that could become known after being visited
by system trajectories. We capture such kind of information
uncertainty by the following partially-known DES.

Definition 2 (Partially-Known DES): A partially-known
DES (PK-DES) is a 6-tuple

G = (X,Σ, δ,∆, x0, Xm)

where X is the set of states; Σ is the set of events; δ :
X×Σ→ X is the transition function; x0 is the initial state;
Xm is the set of marked states; different from the DFA,

∆ : X → 22
Σ

is the event-pattern function that assigns each state a family
of activated events.

The intuition of the PK-DES G is explained as follows.
Essentially, PK-DES is used to describe the possible world
for the system. That is, the system has some prior informa-
tion regarding the possible events of each unknown state but
does not know which ones are activated before the system
trajectory actually visits it. Therefore, in the PK-DES G, for
each state x ∈ X , we have ∆(x) = {o1, o2, . . . , o|∆(s)|}
where each oi ∈ 2Σ is called an event-pattern representing a
possible set of activated events at state x. For convenience,
we refer each oi ∈ ∆(x) to as an observation at state x, since
the system “observes” the activated events when visiting state
x. Therefore, for each x ∈ X , we say x is a known state if

|∆(x)| = 1; and unknown state if |∆(x)| > 1. Accordingly,
we partition the state space as X = Xk∪̇Xuk where Xk is
the set of known states and Xuk is the set of unknown states.
We refer the visit to an unknown state to as an exploration.

Definition 3 (Compatible DES): Given G, a DFA G =
(X,Σ, δG, x0, Xm) is a compatible DES with G, denoted
by G∈G, if for any x∈X , we have i) ΛG(x)∈∆(x); and
ii) for each σ∈ΛG(x), we have δG(x, σ)=δ(x, σ).

In the partially-known setting, a supervisor cannot be
synthesized only based on the finite string generated by
the system. In addition, the observed successor-pattern at
each state should also be taken into consideration. To be
specific, if the system trajectory visits a known state, then
there would not be any useful information about the partially-
known DES, since ∆(x) is already a singleton. Only when
the system trajectory visits unknown state, it will gain new
information and successor-pattern at this state will become
known from then on.

To capture the result of an exploration, we call a tuple
κ = (x(κ), o(κ)) ∈ X × 2Σ as a knowledge state, where
o ∈ ∆(x) is the set of activated events of x that becomes
known to the agent after exploring x. We denote by Kw =
{κ ∈ X × 2Σ : o(κ) ∈ ∆(x(κ))} the set of all possible
knowledge states. A history in G is a finite sequence

ℏ = (x0, o0)σ0(x1, o1)σ1 · · · (xn, on) ∈ (Kw · Σ)∗Kw

such that i) for any i = 0, 1, . . . , n− 1, we have σi ∈ oi and
xi+1 = δ(xi, σi); ii) for any i, j = 1, . . . , n, we have xi =
xj ⇒ oi = oj . For such history ℏ, we call σ1σ2 · · ·σn−1 ∈
X∗ its string. We denote by H(G) and L(G) the set of all
finite histories and paths in PK-DES G, respectively.

Given knowledge on the PK-DES will be accumulated
along a history, which is captured by the following concept of
knowledge set. A knowledge set K = ⟨κ1, . . . , κ|K|⟩ where
κi ∈ K is an ordered set of knowledge states such that

∀κ, κ′ ∈ K : x(κ) = x(κ′)⇒ o(κ) = o(κ′).

We denote by KW the set of all knowledge sets. With a slight
abuse of notation, for each x∈X , we write x∈K if (x, o)∈K
for some observation o∈∆(x). We denote by oK(x)∈∆(x)
the unique observation such that (x, oK(x))∈K.

During the system execution, the system maintains a
knowledge set to record its exploration history. Once a new
unknown state is explored, the knowledge set is updated
according to the following function. Given a knowledge set
K ∈ KW and a knowledge state κ ∈ Kw, we have

update(K, κ) =

{
K, if x(κ) ∈ K
⟨κ1, . . . , κ|K|, κ⟩, otherwise

(8)

Finally, given a knowledge set, the system could refine
the PK-DES by eliminating uncertainties that have been
explored. Given a PK-DES G and a knowledge set K ∈ KW,
the refined PK-DES is a new PK-DES

GK = (X,Σ, δ,∆′, x0, Xm) (9)

such that for any x ∈ X , we have

∆′(x) =

{
{oK(x)}, if x ∈ K
∆(x), if x /∈ K

Therefore, under the setting of partially-known DES, it is
no longer sufficient to synthesize a supervisor in (1), since
the supervisor should decide the control decision based on
both of what the system has visited and what it has known.
Therefore, we define the notion of strategic supervisor.

Definition 4 (Strategic Supervisor): A strategic supervi-
sor is a function

S : H(G)→ Γ

such that for any ℏ = κ0σ1κ1σ2 · · ·κn where κi = (xi, oi),
we have S(ℏ) = {σc} ∪ Σuc, σc ∈ on ∩ Σc, i.e., the
supervisor makes a control decision based on the observed
set of activated events at xn.
We denote by Φ(G) the set of all strategic supervisors in G.

Given a strategic supervisor S ∈ Φ(G) and an actual
DES G ∈ G, the controlled system, denoted by S/G, whose
language L(S/G) is recursively defined as:

i) ϵ ∈ L(S/G);
ii) for any ℏ = κ0σ1κ1σ2 · · ·κn, we have σ1σ2 · · ·σn ∈
L(S/G) iff σ1σ2 · · ·σn−1∈L(S/G) and σn ∈ S(ℏ).

In the partially-known setting, since the actual DES G ∈
G is unknown a priori, we aim to synthesize a strategic
supervisor S ∈ Φ(G) such that

∀G ∈ G : L(S/G) satisfies (2) (10)
We denote by ΦW (G)⊆Φ(G) the set of all winning strategic
supervisors for the reachability objective.

To evaluate the performance of a strategic supervisor S,
a natural approach is to still consider the worst-case cost
similar to the definition of (4) among all possible actual DES,
i.e.,

Costworst(S) := max
G∈G

cost(S/G) (11)

However, this metric cannot capture the potential benefit
obtained from exploring unknown states. To address this
issue, we propose to use regret to evaluate the performance
of a strategic supervisor, which is defined as follows.

Definition 5 (Regret): Given a partially-known DES G,
the regret of a supervisor S ∈ Φ(G) is

Reg(S) = max
G∈G

(
cost(S/G)− min

S′∈ΦW (G)
cost(S′/G)

)
The intuition is explained as follows. For each strategic

supervisor S ∈ Φ(G) and each possible actual DES G ∈
G, cost(S/G) is the actual cost incurred when applying S
to this specific DES, while minS′∈ΦW (G) cost(S′/G) is the
best-response cost if G had been known to the system with
hindsight. Therefore, their difference is the regret of applying
S in G. Since the system does not know which G ∈ G the
actual DES is, the regret of S is defined as the worst-case
regret among all G ∈ G.

Finally, we formally formulate the problem that we solve
in this paper as follows.

Problem 1 (Regret-Optimal Supervisory Control): Given
a partially-known DES G, synthesize a strategic supervisor
S ∈ ΦW (G) such that

∀S′ ∈ ΦW (G) : Reg(S) ≤ Reg(S′). (12)

IV. MAIN RESULTS

In this section, we first show that the regret-optimal
supervisory control problem can be reduced to a quantitative
three-player graph game by incorporating knowledge into
the state space. Then, we propose the algorithm to obtain
the regret-optimal supervisor.
A. Tripartite Transition System

We aim to incorporate the knowledge set into the state
space of the game arena and explicitly split the movements
of the control decision, the system execution, and the non-
determinism of the environment, which leads to the following
notion of tripartite transition system.

Definition 6 (Tripartite Transition System): Given a PK-
DES G, its tripartite transition system (TTS) is a tuple

G = (VX , VY , VZ , v0, fXZ , fZY , fY X ,Σ,Γ)

where
• VX = X ×KW is the set of X-states;
• VY = X ×KW× Γ is the set of Y -states;
• VZ = X ×KW×X ∪ {d} is the set of Z-states;
• v0 = (x0,K0) ∈ QX is the initial state with K0 being

the initial knowledge set;
• fXY : VX ×Γ→ VY is the transition function from X-

states to Y -states defined by: for any vx = (x,K) ∈ VX ,
γ ∈ Γ, and vy = (x,K, γ) ∈ VF , we have

vy = fXY (vx, γ) (13)
• fY Z : VY × (Σ ∪ {ϵ}) → VZ is the transition function

from Y -states to Z-states defined by: for any vy =
(x,K, γ) ∈ VY , we have

– if γ ∩ oK(x) ̸= ∅, we define
fY Z(vy, σ)=(x,K, δ(x, σ)), ∀σ∈γ ∩ oK(x) (14)

– if γ ∩ oK(x) = ∅, we define
fY Z(vx, ϵ) = d (15)

• fZX : VZ×2Σ → VX is the transition function from Z-
states to X-states defined by: for any vz = (x,K, x′) ∈
VZ\{d} and any o ∈ ∆(x′), we define

vx = fZX(vz, o) = (x′,K′) (16)

with K′ = update(K, (x′, o));
• Σ is the set of events in G;
• Γ is the set of admissible control decisions in G.
The intuition of the TTS is explained as follows. The

graph is tripartite with three types of states: the X-states
from which the system chooses a feasible control decision;
the Y -states from which the system is executed according the
control decision chosen before; and the Z-states from which
the actual event-pattern is decided in the possible world.

Note that the knowledge sets are update monotonely since
they are ordered sets. Consider the Z-states with at least two
successors, i.e., vz ∈ VZ satisfying Succ(vz)≥ 2, which we
call as “Z-states with decisions”. Essentially, the knowledge
sets in G will be updated after each Z-state with decisions.
Then we build the following property for G.

Proposition 1: In the TTS G, there are no cycles encom-
passing two different Z-states with decisions.

Proof: The proof is given in Appendix I.

B. Plays and Strategies

We denote by V = VX ∪ VY ∪ VZ the state space of G.
Furthermore, we define the set of marked states in G as Vm =
{(x,K) ∈ VX : x ∈ Xm}. Given G, we call a finite sequence

ρ = v0xv
0
yv

0
zv

1
xv

1
yv

1
z · · · vnx ∈ (VX · VY · VZ)

∗VX

a play if v0x = v0 and there are γi ∈ Γ, σi ∈ Σ ∪ {ϵ} and
oi ∈ 2Σ such that viy = fXY (v

i
x, γi), v

i
z = fY Z(v

i
y, σi), and

vi+1
x = fZX(viz, oi) hold for each i = 0, 1, . . . , n − 1 and
vix=vnx for i = n. It is obvious that each play in G induces
a history in G, i.e.,

ℏρ = (x0, o0)σ0(x1, o1)σ1 · · · (xn, on) ∈ H(G).

For convenience, we still use ρ to denote the partial play that
does not necessarily end with a X-state.

Since only edges from Vz to Vx represent actual move-
ments, we define a weight function for G as wG : V × V →
R≥0 where for any vz = (x,K, x′) and vx = (x′,K′), we
have wG(vz, vx) = w(x, x′), wG(vx, vy) = wG(vy, vz) = 0.
The cost of a play ρ = v0v1 · · · vn ∈ V ∗ is defined as
costG(ρ) =

∑n−1
i=0 wG(vi, vi+1).

Given the above TTS G, the strategies are functions

πx :V
∗VX→VY ∪{Null}, πy :V

∗VY →VZ , πz :V
∗VZ→VX

for X-player, Y -player and Z-player, respectively. We denote
by SX(G), SY (G), SZ(G) the sets of all X-strategies, Y -
strategies and Z-strategies, respectively. In particular, we say
a strategy π is positional if ∀ρ, ρ′ : last(ρ) = last(ρ′) ⇒
π(ρ) = π(ρ′), where last(·) denotes the last state of a
sequence. We denote by S1

j (G) the set of all positional
strategies for j-player, where j =X,Y, Z. Given strategies
πx ∈SX , πy ∈SY , πz ∈SZ , the outcome play ρπx,πy,πz

is
the unique sequence v0v1 · · · vn∈V ∗VX such that

• ∀i < n : vi ∈ VX ⇒ πx(v0v1 · · · vi) = vi+1;
• ∀i < n : vi ∈ VY ⇒ πy(v0v1 · · · vi) = vi+1;
• ∀i < n : vi ∈ VZ ⇒ πz(v0v1 · · · vi) = vi+1;
• πx(v0v1 · · · vn) = Null.

Here we remark that, since the objective of the supervisor is
to satisfy the reachability w.r.t. the set Vm, once the system
trajectory visits Vm, it is unncessary to restrict the behaviors
of the system. To this end, in the TTS G, for a play ρ
satisfying last(ρ) ∈ Null, we set πx(ρ) = Null.

Next, we aim to characterize the sets of strategies for the
X,Y, Z-players that are sufficient to solve the problem.

For the Y -player, since there is no restriction for the
uncontrollable events and no causal relation between two
different events, it is sufficient to consider ΠY = S1

Y (G) for
all the possible behaviors generated by Y -player.

For the Z-player, it cannot play arbitrarily since the actual
DES is fixed. Therefore, the Z-player must commit to a
specific event-pattern it chooses at each unknown state when
the game begins. To this end, we define the following
notion of strongly positional strategy. We say a Z-strategy
πz ∈ SZ(G) is strongly positional if for any two plays
ρ, ρ′∈V ∗VZ where πz(ρ)=(x,K) and πz(ρ

′)=(x′,K′), we
have i) πz is positional; and ii) x = x′ ⇒ oK(x) = oK′(x′).

RegG(πx) = max
πz∈ΠZ

(
max

πy∈ΠY

costG(ρπx,πy,πz
)− min

π′
x∈ΠX

max
πy∈ΠY

costG(ρπ′
x,πy,πz

)

)
(18)

We denote by ΠZ ⊆ SZ(G) the set of all stronly positional
strategies for the Z-player.

Finally, we aim to find a winning X-strategy that ensures
the outcome play visits the state in Vm. Therefore, we define

ΠX =

{
πx ∈ SX(G) :

last(ρπx,πy,πz
) ∈ Vm,

∀πy ∈ ΠY ,∀πz ∈ ΠZ

}
(17)

Now, similarly to Definition 5, we define the regret of an
X-strategy πx ∈ ΠX in G as (18). It suffices to synthesize
an X-strategy πX ∈ ΠX that minimizes RegG(πx). In
what follows, we present the solution by introducing two
algorithms for micro and macro-strategy synthesis.

C. Strategy Synthesis

First of all, we claim that a positional X-strategy is
sufficient to solve the regret-minimizing problem, based on
which a value iteration can be applied. This is due to the fact
that the knowledge update mechanism has been captured in
the state space of TTS G and it is unnecessary for the X-
player to keep additional memory for the knowledge.

Given a knowledge set K ∈ KW, we define the optimistic
response of K as

opr(K) = min{minmax(G) : G ∈ GK} (19)

which can be computed by SolveMinMax(BG, Xm, wBG
),

where BG is the corresponding BTS and minmax(G) can be
returned together. With a slight abuse of notation, for each
X-state vx = (x,K), we define opr(vx) = opr(K).

The optimistic response can be utilized to compute the
regret of an outcome play as follows. Suppose that the system
trajectory ρ reaches a marked state vx = (x,K). Along
this trajectory, the accumulated knowledge is K. Therefore,
opr(vx) serves as a lower-bound estimate of the cost required
to each some marked state in Vm (not necessarily vx) in
the DESs that are compatible with the current knowledge K.
Then, the difference costG(ρ)−opr(vx) essentially quantifies
the regret incurred along the trajectory ρ.

However, due to the possible existence of cycles in G, there
is generally an infinite number of winning strategies for X-
player, which makes enumerating all of them infeasible. To
tackle this issue, we propose to compute micro-strategies to
capture the strategies that are sufficient to obtain the regret-
optimal X-strategy. Based on Proposition 1, we know that,
the evolution of Z-states is monotone and for any plays in
G that end with the same state, they must visit the same Z-
states with decisions in the same order. Therefore, it suffices
to compute the X-strategies between different layers of Z-
states. To formally capture this, we define the set of initial
states for all knowledge sets as

VI ={v0}∪{Succ(vz)∈VX :Succ(vz) ≥ 2,∀vz∈VZ} (20)

For each vI ∈ VI , we define the set of all end states as

VF (vI) = {vx ∈ Vm : K(vx) = K(vI)} (21)

∩

{
vx ∈ VX :

∃vz ∈ VZ s.t. K(vz) = K(vI)∧
vx ∈ Succ(vz) ∧ K(vx) ̸= K(vz)

}

For convenience, in what follows, we use a tree in the
TTS G to represent a strategy and we denote by T the set of
all trees in G. For each T ∈T, we denote by VT and ET its
sets of states and edges. We define the cost of T , denoted by
costT(T), as the maximum cost of its plays from the root to
the leaves. We denote by ρT the play with the maximum cost,
i.e., costG(ρT)=costT(T). Furthermore, for each T ∈ T, it
is a map T : VT → T that assigns each state in T a subtree.
Specifically, we have T (vI) = T , where vI is the root of T .

Definition 7 (Micro-Strategy): Given the TTS G and for
each vI ∈ VI , a micro-strategy for X-player is a winning
strategy (strategy-tree) TvI ∈ T such that

i) the root of TvI is vI ;
ii) for each vx ∈ VTvI

∩ VX , there is only one successor
vy ∈ Succ(vx) in G such that (vx, vy) ∈ ETvI

;
iii) for each vy∈VTvI

∩VY , for any successor vz∈Succ(vy)
in G, we have (vy, vz) ∈ ETvI

;
iv) for each vz ∈ VTvI

∩ VZ , all of the successors vx ∈
Succ(vz) in G are the leaves;

v) All vx ∈ VTvI
∩ Vm are leaves.

Intuitively, each micro-strategy captures the partial strat-
egy for X-player in G that ensures for each vI ∈ VI either
the reachability of Vm or a new exploration. For any two
micro-strategies TvI and T ′

vI , we say they are similar if they
have the same leaves. For each vI ∈ VI , we call the micro-
strategy with the minimum cost as the critical micro-strategy.

Now, we present the algorithm for finding all critical
micro-strategies as Algorithm 2, which is explained in detail
as follows. In Line 2, we define the set of all micro-strategies
as ΠvI which assigns each feasible combination Acc of end
nodes with a micro-strategy and the cost of the strategy. With
a slight abuse of notation, we denote Acc ∈ ΠvI if there is
a micro-strategy for Acc in ΠvI . We aim to use a depth-
first search procedure to find all the strategies. For DFS, we
use v, Vvisit, and C to denote the current state, the states
that have been searched and the minimum cost of the path
from vI to v. For each v, we aim to build a subtree Tv
recursively (Line 7). If the current state v is an end state,
then we compute its visited end nodes as Acc (Line 9) and
update the optimal micro-strategy for Acc in Lines 10–15.
If the current state v is an X-state, then we use C̃, ṽy and T̃
to record the total cost for its optimal subtree, the root of its
optimal subtree, and the optimal subtree, respectively (Lines
18–20). We find the unique optimal subtree for v by Lines
21–31. Specifically, we use Lines 23–25 to ensure that there
is no cycles in the searched subtree. If the current state v is
a Y -state or Z-state, we keep the subtrees starting from all

Algorithm 2: Find All Critical Micro-Strategies (FACMiS)

Input: The TTS G and an initial state vI
Output: All micro-strategies from vI to VF (vI)

1 Compute VF (vI) as in (21);
2 Define ΠvI : 2VF (vI) → T× R≥0;
3 Call DFS(vI , {vI}, 0);
4 return ΠvI

5 procedure DFS(v, Vvis,C)
6 Define subtree Tv : Succ(v)→ T;
7 Tv ← Null;
8 if v ∈ VF (vI) then
9 Acc← Vvis ∩ VF (vI);

10 if Acc /∈ ΠvI then
11 ΠvI (Acc)← (Tv,C);
12 else
13 (T , c)← ΠvI (Acc);
14 if C < c then
15 ΠvI (Acc)← (Tv,C);

16 return Null

17 if v ∈ VX then
18 Define C̃←∞, ṽy ← Null, T̃ ← Null;
19 foreach vy ∈ Succ(v) do
20 if vy /∈ Vvis then
21 Vvis ← Vvis ∪ {vy};
22 T ← DFS(vy, Vvis,C + wG(v, vy));
23 Vvis ← Vvis\{vy};
24 if C + wG(v, vy) + costT(T) < C̃ then
25 C̃← C + wG(v, vy) + costT(T);
26 ṽy ← vy;
27 T̃ ← T ;

28 if ṽy ̸= Null then
29 Tv(ṽy)← T̃ ;

30 if v ∈ VY ∪ VZ then
31 foreach v′ ∈ Succ(v) do
32 if v′ /∈ Vvis then
33 Vvis ← Vvis ∪ {v′};
34 T ← DFS(v′, Vvis,C + wG(v, v

′));
35 Vvis ← Vvis\{v′};
36 Tv(v′)← T ;

37 return Tv

the successors of v. The correctness of the above algorithm
is summarized as follows.

Proposition 2: For each vI ∈ VI , all its the critical micro-
strategies are returned by Algorithm 2.

Proof: The proof is given in Appendix II.
With the critical micro-strategies for one layer of Z-

states with decisions, we next introduce the notion of macro-
strategy that connects the different layers of Z-states with
decisions by the micro-strategies.

Definition 8 (Macro-Strategy): Given G, a macro-strategy
is a map ξ : VI → {ΠvI : vI ∈ VI} such that for each vI ∈

Algorithm 3: Find Regret-Optimal Macro-Strategy
Input: G, an initial state v0, and marked states Vm

Output: The regret-optimal macro-strategy ξ⋆ and
the minimized regret Reg⋆

1 Construct a new graph G̃ = (V,E, µ) with E ← ∅;
2 foreach vI ∈ VI do
3 Compute VF (vI) as in (21);
4 Obtain ΠvI ← FACMiS(vI , VF (vI));
5 foreach Acc ∈ ΠvI do
6 (T , c)← ΠvI (Acc);
7 Find the play with maximum cost ρT ;
8 foreach (v, v′) ∈ ρT do
9 E ← E ∪ {(v, v′)};

10 if v′ = last(ρT) then
11 if v′ ∈ Vm then
12 µ(v, v′)← c− opr(v′);
13 else
14 foreach v′′ ∈ Succ(v) do
15 E ← E ∪ {(v, v′′)};
16 µ(v, v′′)← c;

17 else
18 µ(v, v′)← 0;

19 ξ⋆,Reg⋆ ← SolveMinMax(G̃, Vm, µ);
20 return ξ⋆,Reg⋆

VI , we have ξ(vI)=TvI for some micro-strategy TvI
∈ΠvI .

Due to the fact that VF (vI)⊆ VI for each vI ∈ VI , it is
sufficient to form a complete X-strategy in the TTS G with
one macro-strategy with the corresponding micro-strategies,
each of which starts from either the initial state v0 or one
leave of the last micro-strategy.

Now, we present the algorithm for synthesizing the regret-
optimal macrio-strategy as Algorithm 3. The intuition is
explained as follows. For each micro-strategy T in each
ΠvI , we only keep the maximum cost play ρT in the new
constructed G̃ (Lines 7 and 9). In particular, if ρT does not
end with a marked state, it means that its second last state
is a Z-state. Accordingly, we keep all the successors of its
second last state in G̃ (Line 15). With the above construction,
we reduce the TTS G to a BTS G̃ in which all the Y -state has
only one successor. Furthermore, for the constructed BTS G̃,
if the edge ends with a marked state in Vm, then we set
its new weight as the difference between the actual cost c2
and its optimistic response (Line 12); otherwise, we set the
new weight of the final edge as the actual cost c2 and set
all the other edges as zero (Line 18). Then, the final regret-
optimal macro-strategy can be obtained by solving a min-
max game w.r.t. the BTS G̃, the set of marked states Vm and
the new weight function µ. The correctness of such algorithm
is summarized as following theorem.

Theorem 1: Given the TTS G, the X-strategy formed by
the macro-strategy returned by Algorithm 3 and the micro-
strategies returned by Algorithm 2 minimizes the regret for
X-player, i.e., Problem 1 is solved with minimized Reg⋆.

Proof: The proof is given in Appendix III.

1K01K0, {c1} 1K0, {c2}

1K0, {c2, c1}2K0

2K0, {c2, c1}2K0, {c1}

3K07K0

6K07K0, {c2}

4K2

1K0, 4

3K0, {c1}

3K1, {c1}

3K1

4K2, {c2}

4K1

4K1, {u2}

1K1, {c2, c1}

2K1, {c2, c1}

1K2

4K1, {c2, u2}

1K1

1K1, {c1}

2K1 2K1, {c1}

1K2, {c1}

1K2, {c2, c1}

5K1

5K1, {c2}

7K1

2K2

2K2, {c2, c1}

3K2

3K2, {c1}

6K1

2K2, {u}

7K2

7K2, {c2}

6K2

7K1, {c2}

Fig. 2. Tripartite transition system of PK-DES in Fig 1(b).

Example 1: Let us still consider the PK-DES as shown
in Fig 1(b) where Σc = {c1, c2}, w(c2) = 2, w(c1) =
w(u1) = 10 and w(u2) = 1. The corresponding TTS G is
as shown in Fig 2. For simplicity, we omit Z-states when
the corresponding state is already known as well as the
controllable transitions that can not satisfy the reachability
specification. Since there is only one unknown state in
Fig 1(b), the corresponding Z-state in G is (1,K0, 4) from
which there are two different X-states with the different
updated knowledge set, i.e., (4,K1) and (4,K2). We apply
the solution synthesis approach provided by Algorithm 2 and
Algorithm 3 to obtain the regret-optimal strategic supervisor
as the blue transitions in Fig 2 with the minimized Reg⋆ = 4.

V. CONCLUSION

In this paper, we formulate and solve the regret-optimal su-
pervisory control problem for partially-known discrete-event
systems. To model the system’s interaction with uncertain
environments, we introduce a tripartite transition structure
that captures all possible actual environments. Then by
decomposing the problem into a two-stage reachability game,
we develop the solution algorithm. Our results demonstrate
that regret serves as a more meaningful performance metric
than conventional approaches for handling information that
is deterministic yet initially unknown. This result extends
optimal supervisory control theory beyond traditional worst-
case analysis. For the future work, we plan to extend the
partially-known setting to broader specifications including
cyclic tasks and mean-payoff cost metrics.

REFERENCES

[1] C. Cassandras and S. Lafortune, Introduction to Discrete Event Sys-
tems. Springer, 2008.

[2] P. Ramadge and W. Wonham, “Supervisory control of a class of
discrete event processes,” SIAM Journal on Control and Optimization,
vol. 25, no. 1, pp. 206–230, 1987.

[3] W. Wonham and K. Cai, “Supervisory control of discrete-event sys-
tems,” 2019.

[4] N. Ran, T. Li, S. Wang, and Z. He, “Supervisor synthesis for petri nets
with uncontrollable and unobservable transitions,” IEEE Transactions
on Automation Science and Engineering, vol. 21, no. 2, pp. 1517–
1525, 2023.

[5] Z. Xiang, Y. Chen, N. Wu, and Z. Li, “On the existence of non-
blocking bounded supervisors for discrete event systems,” IEEE Trans-
actions on Automatic Control, 2024.

[6] J. Li and S. Takai, “Synthesis of maximally permissive supervisors for
similarity control of partially observed nondeterministic discrete event
systems,” Automatica, vol. 135, p. 109978, 2022.

[7] R. Meira-Góes, J. Weitze, and S. Lafortune, “A compact and uniform
approach for synthesizing state-based property-enforcing supervisors
for discrete-event systems,” IEEE Transactions on Automatic Control,
vol. 67, no. 7, pp. 3567–3573, 2021.

[8] M. Reniers and K. Cai, “Supervisory control theory with event
forcing,” IEEE Transactions on Automatic Control, 2024.

[9] A. M. Mainhardt and A.-K. Schmuck, “Assume-guarantee synthesis
of decentralised supervisory control,” IFAC-PapersOnLine, vol. 55,
no. 28, pp. 165–172, 2022.

[10] R. Majumdar and A.-K. Schmuck, “Supervisory controller synthesis
for nonterminating processes is an obliging game,” IEEE Transactions
on Automatic Control, vol. 68, no. 1, pp. 385–392, 2022.

[11] Y. Ji, X. Yin, and S. Lafortune, “Optimal supervisory control with
mean payoff objectives and under partial observation,” Automatica,
vol. 123, p. 109359, 2021.

[12] L. V. Alves, P. N. Pena, and R. H. Takahashi, “Planning on discrete
event systems using parallelism maximization,” Control Engineering
Practice, vol. 112, p. 104813, 2021.

[13] J. Fu, A. Ray, and C. M. Lagoa, “Unconstrained optimal control of
regular languages,” Automatica, vol. 40, no. 4, pp. 639–646, 2004.

[14] R. Sengupta and S. Lafortune, “An optimal control theory for discrete
event systems,” SIAM Journal on control and Optimization, vol. 36,
no. 2, pp. 488–541, 1998.

[15] Z. Ma and K. Cai, “Optimal secret protections in discrete-event
systems,” IEEE Transactions on Automatic Control, vol. 67, no. 6,
pp. 2816–2828, 2021.

[16] P. Lv, Z. Xu, Y. Ji, S. Li, and X. Yin, “Optimal supervisory control
of discrete event systems for cyclic tasks,” Automatica, vol. 164,
p. 111634, 2024.

[17] K. Chatterjee, M. Randour, and J.-F. Raskin, “Strategy synthesis for
multi-dimensional quantitative objectives,” Acta informatica, vol. 51,
no. 3, pp. 129–163, 2014.

[18] M. Kwiatkowska, G. Norman, and D. Parker, “Probabilistic model
checking and autonomy,” Annual Review of Control, Robotics, and
Autonomous Systems, vol. 5, pp. 385–410, 2022.

[19] E. Filiot, T. L. Gall, and J.-F. Raskin, “Iterated regret minimization in
game graphs,” in International Symposium on Mathematical Founda-
tions of Computer Science, pp. 342–354, 2010.

[20] P. Hunter, G. A. Pérez, and J.-F. Raskin, “Reactive synthesis without
regret,” Acta Informatica, vol. 54, no. 1, pp. 3–39, 2017.

[21] M. Cadilhac, G. A. Pérez, and M. v. d. Bogaard, “The impatient may
use limited optimism to minimize regret,” in International Conference
on Foundations of Software Science and Computation Structures,
pp. 133–149, Springer, 2019.

[22] J. Zhao, K. Zhu, S. Li, and X. Yin, “To explore or not to explore:
Regret-based ltl planning in partially-known environments,” IFAC-
PapersOnLine, vol. 56, no. 2, pp. 11337–11343, 2023.

[23] X. Yin and S. Lafortune, “Synthesis of maximally permissive supervi-
sors for partially-observed discrete-event systems,” IEEE Transactions
on Automatic Control, vol. 61, no. 5, pp. 1239–1254, 2015.

[24] M. J. Osborne and A. Rubinstein, A course in game theory. MIT
press, 1994.

APPENDIX I
PROOF OF PROPOSITION 1

We prove this result by contradiction. Suppose that there
exists a cycle that encompasses two different Z-states with
decisions. That is, there are vz, v

′
z ∈ VZ satisfying

i) vz ̸= v′z;
ii) there is a sequence starting from vz to v′z; and

iii) there is also a sequence starting from v′z to vz .
Then, based on the construction of G, we know that, after
each X-state with decisions, the knowledge sets will be
updated to a different one, that is,

∀vz ∈ VZ ,∀vx ∈ Succ(vz) ≥ 2⇒ K(vx) ̸= K(vz) (22)

where K(·) denotes the knowledge set of a state in G. From
ii), we know that, K(v′z) is updated from K(vz); and from
iii), we know that, K(vz) is updated from K(v′z). Since
knowledge sets are ordered sets, to satisfy ii) and iii), we
have K(vz) = K(v′z), which contradicts with (22). The proof
is thus completed.

APPENDIX II
PROOF OF PROPOSITION 2

We first prove the soundness, i.e., all strategies returned by
Algorithm 2 are micro-strategies for each vI ∈ VI according
to Definition 7. It is obvious that i) is satisfied since the
DFS starts from vI . For each X-state of each returned
strategy, there is only one successor based on Lines 17–
29, which satisfies ii). Similarly, Lines 30–36 ensure that
all the successors of each Y -state and each Z-state in G are
added to the returned strategy tree. Specifically, for each Z-
state, since all its successors are included in VF (vI), Lines
8–16 ensure that all theses successors are leaves of each
returned strategy tree, which satisfies iv). Finally, since the
marked states which have the same knowledge set with vI
are also included in VF (vI), Lines 8–16 also ensures that
these marked states are the leaves of each returned strategy,
which satisfies v). Therefore, each returned strategy in ΠvI

is a micro-strategy for each vI ∈ VI .
Then, we show the completeness, i.e., for each vI ∈ VI ,

for any its micro-strategy in G, there is a corresponding
similar micro-strategy in ΠvI

returned by Algorithm 2. In
the algorithm, we use Acc to record the leaves of each
strategy tree. Specifically, by Line 9, we know that, once
a leaf state is searched, Acc will be updated. Since DFS
guarantees the traverse among all the end nodes in VF (vI),
each possible combination of the end nodes will be captured
by different Acc. By Lines 10-11, we know that, for each
Acc, there is a corresponding micro-strategy updated, i.e.,
ΠvI (Acc). Therefore, for any micro-strategies with different
leaves, there are corresponding micro-strategies in ΠvI .

Finally, we show the optimality, i.e., all the strategies
returned by Algorithm 2 are critical strategies. By Lines
20–29, we ensure that, all the micro-strategies will not
include any cycles, since only one successor ṽy with the
corresponding optimal subtree T̃ is added to Tv and each

candidate vy is updated only when it was not searched, i.e.,
vy /∈ Vvis. We use C to record the minimum cost of the path
from vI to the current searched state v. For each possible
Acc, we update its optimal micro-strategy by Lines 13–
15. Therefore, all the returned strategies are critical micro-
strategies. The proof is thus completed.

APPENDIX III
PROOF OF THEOREM 1

By Proposition 2, we know that, for any πx ∈ ΠX , there
exists a macro-strategy with corresponding micro-strategies,
denoted by π(ξ,Π), such that for any πy ∈ ΠY and πz ∈ ΠZ ,
we have

last(ρπ(ξ,Π),πy,πz
) = last(ρπx,πy,πz

) (23)

costG(ρπ(ξ,Π),πy,πz
) ≤ costG(ρπx,πy,πz

) (24)

Therefore, it suffices to only consider all the micro-strategies
returned by Algorithm 2.

On the other hand, due to the definition of the optimistic
response, for any πx∈ΠX , πy∈ΠY and πz∈ΠZ , we have

Regπz

G (πx) ≥ max
πy∈ΠY

costG(ρπx,πy,πz)−opr(last(ρπx,πy,πz))

(25)
where we denote

Regπz

G (πx) := max
πy∈ΠY

costG(ρπx,πy,πz
)

− min
π′
x∈ΠX

max
πy∈ΠY

costG(ρπ′
x,πy,πz) (26)

as the regret of πx against Z-strategy πz . Note that the
equality holds if the Z-strategy corresponds to the actual
DES such that (19) holds. Then, we can use the optimistic
response to compute the regret for any πx ∈ ΠX by

RegG(πx) = (27)

max
πz∈ΠZ

(
max

πy∈ΠY

costG(ρπx,πy,πz
)− opr(last(ρπx,πy,πz

))

)
With (23), (24), and (27), we know that, it suffices to

consider the plays ρ decided by the macro-strategies and the
micro-strategies with a new cost costG(ρ) − opr(last(ρ)).
Since all the critical micro-strategies have been captured by
ΠvI for any vI ∈ VI , to consider the worst-case cost of each
micro-strategy, Lines 7–9 ensure that only the plays with the
worst-case cost are added to the new graph G̃. Furthermore,
Lines 10–12 ensure that the new cost function has been
defined for the edges ending with the marked states. Lines
14–18 ensure that the edges ending with end notes in VI(vI)
capture the original worst-case cost. With the above weight
function setting, we know that, each complete play ρ in G̃
satisfies

costµG̃(ρ) = costG(ρ)− opr(last(ρ)) (28)

where we use costµG̃(·) to denote the total cost of G̃ w.r.t. the
new weight function µ. Therefore, it suffices to solve a new
min-max game over the BTS G̃ w.r.t. µ, which is captured
by Line 19. The proof is thus completed.

